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Abstract

As internet grows to be cheaper and faster, distributed software systems and applications are
becoming more and more ubiquitous. Today they are the backbone of a large number of online
services like banking, e-commerce, social networking, etc. As the popularity of these softwares
increases, it is very important that they ensure strong levels of reliability and security.

Modern distributed software is centered around using large-scale storage systems for storing
and retrieving data. To ensure persistence and availability of data in the presence of failures, these
systems maintain data in multiple copies that are stored on di�erent nodes in the network. Then,
for performance reasons, these copies are allowed to (temporarily) diverge, an instance of the so-
called weak-consistency, which makes the semantics of concurrent accesses to data quite complex.

Over the recent years, many solutions for implementing weakly-consistent storage systems have
been proposed. These implementations are most often very complex and error-prone. The spe-
ci�c levels of weak consistency they ensure are most often described only informally, which makes
it di�cult to reason about them. Moreover, in many cases, there are signi�cant discrepancies be-
tween the guarantees claimed in their documentation and the guarantees that they really provide.

The objective of this dissertation is to propose algorithmic techniques for automated testing of
weakly-consistent distributed systems against formal specifications. We focus on an important
class of distributed data types, called Conflict-Free Replicated Data Types (CRDT s for short),
that include many variations like registers, �ags, sets, arrays, etc., and on Transactional Systems
(Databases), which enable computations on shared data that are isolated from other concurrent
computations and resilient to failures. We introduce formal speci�cations for such systems and in-
vestigate the asymptotic complexity of checking whether a given execution conforms to such spec-
i�cations. We also study the problem of testing applications that run on top of weakly-consistent
transactional systems, introducing an mock in-memory storage system that simulates the behav-
iors of such systems according to their formal speci�cations.

Keywords: Formal Methods, Concurrency, Distributed Systems, Databases, Automated Test-
ing, Weak Consistency, Replicated Data Types, Transactions, Isolation Levels, Complexity
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Résumé

À mesure que l’internet devient moins cher et plus rapide, les systèmes et les applications logi-
cielles distribués deviennent de plus en plus omniprésents. Aujourd’hui, ils sont à la base d’un
très grand nombre de services en ligne tels que les banques, le commerce électronique, les réseaux
sociaux, etc. Au fur et à mesure que la popularité de ces logiciels augmente, il est très important
qu’ils garantissent des niveaux élevés de �abilité et de sécurité.

Les logiciels distribués modernes sont centrés sur l’utilisation de systèmes de stockage à grande
échelle pour stocker et manipuler des données. Pour assurer la persistance et la disponibilité des
données en présence de pannes, ces systèmes maintiennent les données en plusieurs copies stockées
sur di�érents nœuds du réseau. Pour des raisons de performances, ces copies peuvent diverger
(temporairement), une instance de la soi-disant cohérence faible, ce qui rend la sémantique des
accès concurrents aux données très complexe.

Au cours des dernières années, de nombreuses solutions pour implémenter des systèmes de
stockage à cohérence faible ont été proposées. Ces implémentations sont le plus souvent très com-
plexes et sujettes aux erreurs. Les niveaux spéci�ques de cohérence faible qu’ils assurent ne sont
le plus souvent décrits que de manière informelle, ce qui rend di�cile le raisonnement sur leurs
correction. De plus, dans de nombreux cas, il existe des écarts importants entre les garanties men-
tionnées dans leur documentation et les garanties qu’elles fournissent réellement.

L’objectif de cette thèse est de proposer des techniques algorithmiques pour le teste automatisé
de systèmes distribués à cohérence faible par rapport à des spécifications formelles. Nous étudions
une classe importante de types de données distribués, appelés types de données répliqués sans conflit
(CRDT ), qui inclut de nombreuses variantes comme des registres, des ensembles, des tableaux,
etc., et des systèmes (bases de données) transactionnels, qui permettent des calculs sur des données
isolés des autres calculs concurrents et tolérants aux pannes. Nous introduisons des spéci�cations
formelles pour de tels systèmes et nous étudions la complexité asymptotique de la véri�cation de
la correction d’une exécution donnée par rapport à ces spéci�cations. Nous étudions également
le problème du teste des applications qui s’exécutent sur des systèmes transactionnels à cohérence
faible, en introduisant un système de stockage en mémoire qui simule les comportements de ces
systèmes par rapport à leurs spéci�cations formelles.

Mots-clés: Méthodes formelles, Concurrence, Systèmes distribués, Bases de données, Teste au-
tomatisé, Cohérence faible, Types de données répliqués, Transactions, Complexité.
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1 Introduction

As internet grows to be cheaper and faster, distributed software systems and applications are be-
coming more and more ubiquitous. Today they are the backbone of a large number of online
services like banking, e-commerce, social networking, etc. As the popularity of these softwares
increases, it is very important that they ensure strong levels of reliability and security.

Distributed software is deployed over multiple nodes connected through a network, e.g., the
internet. Data is typically replicated at multiple nodes, in order to guarantee availability and fast
response to user requests. A user connects to the node nearest to them and that node serves its
requests. This way the system reduces response time and distributes the workload to multiple
nodes. Also, if some node goes o�ine, the system remains available since other nodes can still
serve users.

While data replication is a solution to improving availability and scalability, it actually o�ers
a trade o�. As we allow concurrent modi�cations of data at multiple nodes, they still need to
synchronize among them and maintain a meaningful or consistent view of data. A pessimistic ap-
proach to maintaining consistency, based on global locks (or other synchronization protocols like
2-Phase-Commit), defeats the whole purpose of replication, because taking a lock over a multiple
distributed nodes means more communication and slow response time.

Over the recent years, many solutions for implementing weakly-consistent distributed systems
have been proposed. Such systems allow di�erent nodes to store di�erent versions of data in favor
of scalability, thereby violating notions of strong consistency (all nodes store the same data at all
times) that could be maintained using the pessimistic approaches mentioned above. The speci�c
levels of consistency these systems ensure are most often described only informally, which makes
it di�cult to reason about them. Moreover, in many cases, there are signi�cant discrepancies be-
tween the guarantees claimed in their documentation and the guarantees that they really provide.

The objective of this dissertation is to propose algorithmic techniques for automated testing of
weakly-consistent distributed systems against formal specifications. We focus on an important
class of distributed data types, called Conflict-Free Replicated Data Types (CRDT s for short),
that include many variations like registers, �ags, sets, arrays, etc., and on Transactional Systems
(Databases), which enable computations on shared data that are isolated from other concurrent
computations and resilient to failures. We introduce formal speci�cations for such systems and in-
vestigate the asymptotic complexity of checking whether a given execution conforms to such spec-
i�cations. We also study the problem of testing applications that run on top of weakly-consistent
transactional systems, introducing an mock in-memory storage system that simulates the behav-
iors of such systems according to their formal speci�cations.
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1 Introduction

r2

r1

add(a) add(b) remove(a) contains(a)=true

contains(b)=true

add(b) add(a) remove(b) contains(b)=true

contains(a)=true

{a} {a,b} {a,b} {b} {a,b} {a,b}

{b} {a,b} {a,b} {a} {a,b} {a,b}

Figure 1.1: A non-linearizable OR-Set execution. Edges represent propagation of updates. Each replica is
annotated with labels showing the evolution of the set object after each update.

1.1 Conflict-Free Replicated Data Types

Con�ict-Free Replicated Data Types (CRDTs) [87] represent a methodological approach to the
problem of retaining some form of data-Consistency and Availability under network Partitions
(CAP), famously known to be an impossible combination of requirements by the CAP theorem
of Gilbert and Lynch [55]. CRDTs are data types designed to favor availability over consistency
by replicating the type instances across multiple nodes of a network, and allowing di�erent nodes
to temporarily have di�erent views of the same instance. However, CRDTs guarantee that the
di�erent states of the multiple nodes will eventually converge to a unique state common to all
nodes [26, 87]. Importantly, this convergence property is intrinsic to the data type design and in
general no synchronization is needed among nodes, hence achieving availability.

A client, i.e. a program issuing calls to a data type instance, connects to any node holding a
copy of the instance, called replica, and performs the operation in that replica. The state of the
instance is read only at that replica, and if the state needs to be changed as part of the operation,
an update is generated, which will be asynchronously propagated to all the other replicas. When
updates eventually reach all replicas, they may be received in di�erent orders by di�erent replicas.
To ensure convergence, con�icts between concurrent updates need to be resolved. This is quite
non-trivial and an important source of complexity.

For instance, Figure 1.1 pictures an execution of a CRDT called OR-Set [87], a set data type
with standard add(_), remove(_), contains(_) operations. add(_) and remove(_) are the only up-
date operations. Two updates are in con�ict if they are trying to insert or remove the same ele-
ment, and possible con�icts are resolved by assuming that an add(_) operation will always “win”
among multiple con�icting concurrent updates, i.e., it will overwrite their e�ect. In Figure 1.1,
each replica executes the �rst two add operations in isolation (without being aware of operations
on the other replica), receives the �rst add update from the other replica, and executes a remove

operation before receiving the second add update from the other replica (as mentioned above, up-
dates are propagated to other replicas asynchronously). The element b, resp., a, is again a member
of the set on the top replica, resp., bottom replica, after receiving the last add update because the
latter is concurrent (not causally related) to the remove on the receiving replica and the con�ict
is resolved by assuming that the add wins. This is witnessed by the last two contains operations
on each replica that both return true. Note that this execution is an instance of weak consistency
since the return values of the contains operations cannot be explained using an interleaving of

2



1.2 Transactional Systems

Data Types Complexity

Add-Wins Set, Remove-Wins Set np-complete
Enable-Wins Flag, Disable-Wins Flag np-complete
Last-Writer-Wins Register (lww) np-complete
Multi-Value Register (mvr) np-complete
Registers – with unique values ptime
Replicated Counters np-complete
Replicated Growable Array (rga) ptime

Figure 1.2: The complexity of consistency checking for various replicated data types.

Payment(k):

x = read_balance()

...

update_balance(x - k)

Payment(k):

x = read_balance()

...

update_balance(x - k)

Figure 1.3: A concurrent program. Edges show a non-transactional execution where both reads execute
before a write.

these operations (consistent with the order between operations on the same replica) as in classic
variations of strong consistency, e.g., sequential consistency [67] or linearizability[60].

In this thesis we study the tractability of checking whether an execution of a CRDT conforms
to the intended speci�cation for di�erent classes of data types; Figure 1.2 summarizes some of our
results. This problem is particularly relevant as distributed-system testing tools like Jepsen [65] are
appearing; without e�cient, general consistency-checking algorithms, such tools could be limited
to specialized classes of errors like node crashes.

Our study proceeds in two parts. First, to precisely characterize the consistency of various
CRDTs, and facilitate symbolic reasoning, we develop novel logical characterizations to capture
their guarantees. These characterizations integrate the data type semantics into the consistency
guarantees, as opposed to existing formalizations, e.g., [26, 29], of eventual consistency [91], causal
consistency [68], sequential consistency, or linearizability, where the data type semantics is a pa-
rameter of the consistency speci�cation.

Second, we demonstrate the intractability of several CRDTs by reduction from propositional
satis�ability (SAT) problems, and we develop tractable consistency-checking algorithms for indi-
vidual data types and special cases. Previous work has mostly focused on the problem of checking
conformance to strong notions of consistency, e.g., checking for sequential consistency [15, 27, 59,
84], serializability [36, 45, 46, 57], or linearizability [28, 44, 70, 95].

1.2 Transactional Systems

Transactions simplify concurrent programming by enabling multiple computations on shared
data that are isolated from other concurrent computations and resilient to failures. As an illus-

3



1 Introduction

trating example, consider the Payment procedure in Figure 1.3 to be executed by two di�erent
processes. If we allow the internal read and write operations to be interleaved, we can have a
scenario where both reads happen before a write. This would allow a user to pay €200 while
his balance decreases only by €100. Executing the code of Payment as a transaction can disable
such a behavior since each invocation is executed in isolation without interference from the other
invocation. Modern databases provide transactions in various forms corresponding to di�erent
tradeo�s between consistency and availability. The strongest level of consistency is achieved with
serializable transactions [80] whose outcome in concurrent executions is the same as if the trans-
actions were executed atomically in some order. Unfortunately, serializability carries a signi�cant
penalty on the availability of the system assuming, for instance, that the database is accessed over
a network that can su�er from partitions or failures. For this reason, modern databases often pro-
vide weaker guarantees about transactions, formalized by weak consistency models, e.g., causal
consistency [68] and snapshot isolation [12].

Implementations of large-scale databases providing transactions are di�cult to build and test.
For instance, distributed (replicated) databases must account for partial failures, where some com-
ponents or the network can fail and produce incomplete results. Ensuring fault-tolerance relies on
intricate protocols that are di�cult to design and reason about. The black-box testing framework
Jepsen [63] found a remarkably large number of subtle problems in many production distributed
databases.

Testing a transactional database raises two issues: (1) deriving a suitable set of testing scenarios,
e.g., faults to inject into the system and the set of transactions to be executed, and (2) deriving
e�cient algorithms for checking whether a given execution satis�es the considered consistency
model. The Jepsen framework aims to address the �rst issue by using randomization, e.g., intro-
ducing faults at random and choosing the operations in a transaction randomly. The e�ectiveness
of this approach has been proved formally in recent work [79]. The second issue is, however, largely
unexplored. Jepsen checks consistency in a rather ad-hoc way, focusing on speci�c classes of vio-
lations to a given consistency model, e.g., dirty reads (reading values from aborted transactions).
This problem is challenging because the consistency speci�cations are non-trivial and they cannot
be checked using, for instance, standard local assertions added to the client’s code.

Besides serializability, the complexity of checking correctness of an execution w.r.t. some con-
sistency model is unknown. Checking serializability has been shown to be NP-complete [80], and
checking causal consistency in a non-transactional context is known to be polynomial time [21].
In this thesis, we try to �ll this gap by investigating the complexity of this problem w.r.t. several
consistency models and, in the case of NP-completeness, devising algorithms that are polynomial
time assuming �xed bounds for certain parameters of the input executions, e.g., the number of
sessions.

We consider several consistency models that are the most prevalent in practice. The weakest of
them, Read Committed (RC) [12], requires that every value read in a transaction is written by a
committed transaction. Read Atomic (RA) [31] requires that successive reads of the same variable
in a transaction return the same value (also known as Repeatable Reads [12]), and that a transac-
tion “sees” the values written by previous transactions in the same session. In general, we assume
that transactions are organized in sessions [90], an abstraction of the sequence of transactions per-
formed during the execution of an application. Causal Consistency (CC) [68] requires that if a
transaction t1 “a�ects” another transaction t2, e.g., t1 is ordered before t2 in the same session or

4



1.3 Applications Using Transactional Systems

t2 reads a value written by t1, then these two transactions are observed by any other transaction
in this order. Prefix Consistency (PC) [30] requires that there exists a total commit order between
all the transactions such that each transaction observes a pre�x of this sequence. Snapshot Isola-
tion (SI) [12] further requires that two di�erent transactions observe di�erent pre�xes if they both
write to a common variable.

We establish that checking whether an execution satis�es RC, RA, or CC is polynomial time,
while the same problem is NP-complete for PC and SI. Moreover, in the case of the NP-complete
consistency models (PC, SI, SER), we show that their veri�cation problem becomes polynomial
time provided that, roughly speaking, the number of sessions in the input executions is consid-
ered to be �xed (i.e., not counted for in the input size). In more detail, we establish that checking
SER reduces to a search problem in a space that has polynomial size when the number of sessions
is �xed. (This algorithm applies to arbitrary executions, but its complexity would be exponential
in the number of sessions in general.) Then, we show that checking PC or SI can be reduced in
polynomial time to checking SER using a transformation of executions that, roughly speaking,
splits each transaction in two parts: one part containing all the reads, and one part containing all
the writes (SI further requires adding some additional variables in order to deal with transactions
writing on a common variable). We extend these results even further by relying on an abstraction
of executions called communication graphs [33]. Roughly speaking, the vertices of a communica-
tion graph correspond to sessions, and the edges represent the fact that two sessions access (read or
write) the same variable. We show that all these criteria are polynomial-time checkable provided
that the biconnected components of the communication graph are of �xed size.

These results rely on a novel speci�cation framework for such criteria which is of independent
interest. This framework uses logical constraints, called axioms, to characterize the set of execu-
tions that conform to a particular consistency level. An execution is modeled using a speci�c set
of relations between events/transactions that describe control-�ow or data-�ow dependencies: a
program order po between events in the same transaction, a session order so between transactions
in the same session, and a write-read wr (read-from) relation that associates each read event with a
transaction that writes the value returned by the read. These relations along with the events (also
called, operations) in an execution are called a history. A given history is said to satisfy a consis-
tency model if it admits a total commit order between its transactions satisfying a speci�c set of
axioms, which intuitively, de�ne lower bounds on the set of transactions t1 that must precede in
commit order a transaction t2 that is read in the execution.

We provide an experimental evaluation of our algorithms on executions of several production
databases, that makes it possible to uncover new bugs or contradictions to their documentation.
In particular, we show that, although the asymptotic complexity of our algorithms is exponential
in general (w.r.t. the number of sessions), the worst-case behavior is not exercised in practice.

1.3 Applications Using Transactional Systems

Data storage is no longer about writing data to a single disk with a single point of access. Mod-
ern applications require not just data reliability, but also high-throughput concurrent accesses.
Applications concerning supply chains, banking, etc. use traditional relational databases for stor-
ing and processing data, whereas applications such as social networking software and e-commerce
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1 Introduction

// Append item to cart

AddItem(item i, userId) {

Begin()

key = "cart:" + userId

cart = read(key)

cart.append(i)

write(key, cart)

Commit()

}

// Fetch cart and delete item

DeleteItem(item i, userId) {

Begin()

key = "cart:" + userId

cart = read(key)

cart.remove(i)

write(key, cart)

Commit()

}

Initial state
write(cart:u, {.. I ..})

read(cart:u, {.. I ..})

write(cart:u, {.. I, I ..})

AddItem
read(cart:u, {.. I ..})

write(cart:u, {.. ..})

DeleteItem

read(cart:u, {.. ..})

read(cart:u, {.. I, I .})

po po

wr wr

so

wr

wr

Figure 1.4: A simple shopping cart service.

platforms use cloud-based storage systems (such as Azure CosmosDb [82], Amazon DynamoDb
[38], Facebook TAO [23], etc.). We use the term storage system to refer to any such database sys-
tem/service.

Providing high-throughput processing, unfortunately, comes at an unavoidable cost of weak-
ening the guarantees o�ered to users. Concurrently-connected clients may end up observing dif-
ferent views of the same data. These “anomalies” can be prevented by using a strong consistency
model such as serializability, which essentially o�ers a single view of the data. However, since se-
rializability requires expensive synchronization and incurs a high performance cost, most storage
systems use weaker consistency models, such as RC, CC, or SI. In a recent survey of database ad-
ministrators [81], 86% of the participants responded that most or all of the transactions in their
databases execute at read committed (RC) consistency models.

A weaker consistency model allows for more possible behaviors than stronger consistency mod-
els. It is up to the developers then to ensure that their application can tolerate this larger set of
behaviors. Unfortunately, weak consistency models are hard to understand or reason about [3,
24] and resulting application bugs can cause loss of business [94]. Consider a simple shopping
cart application that stores a per-client shopping cart in a key-value store (key is the client ID and
value is a multi-set of items). Figure 1.4 shows procedures for adding an item to the cart (AddItem)
and deleting all instances of an item from the cart (DeleteItem). Each procedure executes in a
transaction, represented by the calls to Begin and Commit. Suppose that initially, a user u has a
single instance of item I in their cart. Then the user connects to the application via two di�er-
ent sessions (for instance, via two browser windows), adds I in one session (AddItem(I, u)) and
deletes I in the other session (DeleteItem(I, u)). With serializability, the cart can either be left
in the state {I} (delete happened �rst, followed by the add) or ∅ (delete happened second). How-
ever, with causal consistency (or read committed), it is possible that with two sequential reads of
the shopping cart, the cart is empty in the �rst read (signaling that the delete has succeeded), but
there are two instances of I in the second read! The history corresponding to this behavior is given
on the bottom of Figure 1.4 (read operations include the read value, and boxes group events from
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1.3 Applications Using Transactional Systems

the same transaction). Such anomalies, of deleted items reappearing, have been noted in previous
work [38].

In this thesis, we address the problem of testing code for correctness against weak behaviors:
a developer should be able to write a test that runs their application and then asserts for correct
behavior. The main di�culty today is getting coverage of weak behaviors during the test. If one
runs the test against the actual production storage system, it is very likely to only result in seri-
alizable behaviors because of their optimized implementation. For instance, only 0.0004% of all
reads performed on Facebook’s TAO storage system were not serializable [71]. Emulators, o�ered
by cloud providers for local development, on the other hand, do not support weaker consistency
models at all [8]. Another option, possible when the storage system is available open-source, is to
set it up with a tool like Jepsen [63] to inject noise (bring down replicas or delay packets on the
network). This approach is unable to provide good coverage at the level of client operations [85]
(§4.6). Another line of work has focussed on �nding anomalies by identifying non-serializable be-
havior (§4.7). Anomalies, however, do not always correspond to bugs [25, 52]; they may either not
be important (e.g., gather statistics) or may already be handled in the application (e.g., checking
and deleting duplicate items).

We present MonkeyDB, a mock in-memory storage system meant for testing correctness of
storage-backed applications. MonkeyDB supports common APIs for accessing data (key-value
updates, as well as SQL queries), making it an easy substitute for an actual storage system. Mon-
keyDB can be con�gured with one of several consistency models. On a read operation, MonkeyDB
computes the set of all possible return values allowed under the chosen consistency models, and
randomly returns one of them. The developer can then simply execute their test multiple times to
get coverage of possible weak behaviors. For the program in Figure 1.4, if we write a test asserting
that two sequential reads cannot return empty-cart followed by {I, I}, then it takes only 20 runs
of the test (on average) to fail the assert. In contrast, the test does not fail when using MySQL
with read committed, even after 100k runs.

DesignofMonkeyDB MonkeyDB does not rely on stress generation, fault injection, or data
replication. Rather, it works directly with a formalization of the given consistency model in order
to compute allowed return values.

MonkeyDB implements a centralized operational semantics for key-value stores, which is based
on the axiomatic de�nitions of consistency models that we introduced while investigating the al-
gorithmic questions described in Section 1.2. Transactions are executed serially, one after another,
the concurrency being simulated during the handling of read events. This semantics maintains a
history that contains all the past events (from all transactions/sessions), and write events are simply
added to the history. The value returned by a read event is established based on a non-deterministic
choice of a write-read dependency (concerning this read event) that satis�es the axioms of the con-
sidered consistency model. Depending on the weakness of the consistency model, this makes it
possible to return values written in arbitrarily “old” transactions, and simulate any concurrent be-
havior. For instance, the history in Figure 1.4 can be obtained by executing AddItem, DeleteItem,
and then the two reads (serially). The read in DeleteItem can take its value from the initial state
and “ignore” the previously executed AddItem, because the obtained history validates the axioms
of causal consistency (or read committed). The same happens for the two later reads in the same
session, the �rst one being able to read from DeleteItem and the second one from AddItem.
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1 Introduction

We formally prove that this semantics does indeed simulate any concurrent behavior, by show-
ing that it is equivalent to a semantics where transactions are allowed to interleave. In comparison
with concrete implementations, this semantics makes it possible to handle a wide range of consis-
tency models in a uniform way. It only has two sources of non-determinism: the order in which
entire transactions are submitted, and the choice of write-read dependencies in read events. This
enable better coverage of possible behaviors, the penalty in performance not being an issue in
safety testing workloads which are usually small (see our evaluation).

We also extend our semantics to cover SQL queries as well, by compiling SQL queries down to
transactions with multiple key-value reads/writes. A table in a relational database is represented
using a set of primary key values (identifying uniquely the set of rows) and a set of keys, one for
each cell in the table. The set of primary key values is represented using a set of Boolean key-
value pairs that simulate its characteristic function (adding or removing an element corresponds
to updating one of these keys to true or false). Then, SQL queries are compiled to read or write
accesses to the keys representing a table. For instance, a SELECT query that retrieves the set of
rows in a table that satisfy a WHERE condition is compiled to (1) reading Boolean keys to identify
the primary key values of the rows contained in the table, (2) reading keys that represent columns
used in the WHERE condition, and (3) reading all the keys that represent cells in a row satisfying
the WHERE condition. This rewriting contains the minimal set of accesses to the cells of a table
that are needed to ensure the conventional speci�cation of SQL. It makes it possible to “export”
formalizations of key-value store consistency models to SQL transactions.

We present an evaluation of MonkeyDB on several applications, showcasing its superior cover-
age of weak behaviors as well as bug-�nding abilities.

1.4 Thesis Outline

The rest of this dissertation is organized as follows:

• Chapter 2 investigates the problem of testing implementations of CRDTs. It presents for-
mal speci�cations for such datatypes and studies the asymptotic complexity of checking
whether a given execution satis�es a CRDT formal speci�cation.

• Chapter 3 de�nes axiomatic speci�cations of several transactional consistency models and
establishes complexity results concerning the problem of checking conformance to such
speci�cations for a given execution. It shows that consistency models weaker than Causal
Consistency can be checked in polynomial time, while the problem becomes NP-complete
for stronger models. In the latter case, it identi�es a parameter of executions which enables
polynomial-time algorithms when �xed.

• Chapter 4 investigates the testing coverage problem for distributed applications built on
top of transactional datastores. It presents the mock in-memory storage system MonkeyDB,
which simulates transactional datastores according to their formal speci�cations. The ex-
perimental evaluation of MonkeyDB shows that it provides better test coverage than state
of the art setups.

• Chapter 5 concludes and discusses directions for future work.
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2 Checking Consistency for
Conflict-Free Replicated Data
Types

In this chapter we study the tractability of runtime CRDT consistency checking: deciding whether
a given execution of a CRDT is consistent with its speci�cation. Our setting captures executions
across a set of replicas as per-replica sequences of operations called histories. Roughly speaking,
a history is consistent so long as each operation’s return value can be justi�ed according to the
operations that its replica has observed so far. In the setting of CRDTs, the determination of a
replica’s observations is essentially an implementation choice: replicas are only obliged to observe
their own operations, and the predecessors of those it has already observed. This relatively-weak
constraint on replicas’ observations makes the CRDT consistency checking problem unique.

We present logical characterizations of CRDTs, which are built on a notion of abstract execu-
tion, which relates the operations of a given history with three separate relations: a read-from rela-
tion, governing the observations from which a given operation constitutes its own return value; a
happens-before relation, capturing the causal relationships among operations; and a linearization
relation, capturing any necessary arbitration among non-commutative e�ects which are executed
concurrently, e.g., following a last-writer-wins policy. Accordingly, we capture data type speci-
�cations with logical axioms interpreted over the read-from, happens-before, and linearization
relations of abstract executions, reducing the consistency problem to: does there exist an abstract
execution over the given history which satis�es the axioms of the given data type?

We demonstrate the intractability of several replicated data types by reduction from propo-
sitional satis�ability (SAT) problems. In particular, we consider the 1-in-3 SAT problem [53],
which asks for a truth assignment to the variables of a given set of clauses such that exactly one
literal per clause is assigned true. Our reductions essentially simulate the existential choice of a
truth assignment with the existential choice of the read-from and happens-before relations of an
abstract execution. For a given 1-in-3 SAT instance, we construct a history of replicas obeying
carefully-tailored synchronization protocols, which is consistent exactly when the corresponding
SAT instance is positive.

Finally, we develop tractable consistency-checking algorithms for individual data types and spe-
cial cases: replicated growing arrays; multi-value and last-writer-wins registers, when each value is
written only once; counters, when replicas are bounded; and sets and �ags, when their sizes are
also bounded. While the algorithms for each case are tailored to the algebraic properties of the data
types they handle, they essentially all function by constructing abstract executions incrementally,
processing replicas’ operations in pre�x order.

The remainder of this chapter is organized as follows:
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2 Checking Consistency for Conflict-Free Replicated Data Types

• Section 2.1 presents logical characterizations of consistency for the replicated register, �ag,
set, counter, and array data types;

• Section 2.2 introduces reductions from propositional satis�ability problems to consistency
checking to demonstrate intractability for replicated �ags, sets, counters, and registers; and

• Section 2.3 de�nes polynomial time consistency-checking algorithms for replicated grow-
able arrays, registers, when written values are unique, counters, when replicas are bounded,
and sets and �ags, when their sizes are also bounded.

Section 2.4 overviews related work, and Section 2.5 concludes.

2.1 A Logical Characterization of Replicated Data Types

In this section we describe an axiomatic framework for de�ning the semantics of replicated data
types. We consider a set of method names M, and that each method m ∈ M has a number of
arguments and a return value sampled from a data domain D. We will use operation labels of
the form m(a)

i⇒ b to represent the call of a method m ∈ M, with argument a ∈ D, and
resulting in the value b ∈ D. Since there might be multiple calls to the same method with the
same arguments and result, labels are tagged with a unique identi�er i. We will ignore identi�ers
when unambiguous.

The interaction between a data type implementation and a client is represented by a history
h = 〈Op, ro〉 which consists of a set of operation labels Op and a partial replica order ro or-
dering operations issued by the client on the same replica. Usually, ro is a union of sequences,
each sequence representing the operations issued on the same replica, and the width of ro, i.e.,
the maximum number of mutually-unordered operations, gives the number of replicas in a given
history.

To characterize the set of histories h = 〈Op, ro〉 admitted by a certain replicated data type, we
use abstract executions e = 〈rf, hb, lin〉, which include:

• a read-from binary relation rf over operations in Op, which identi�es the set of updates
needed to “explain” a certain return value, e.g., awriteoperation explaining the return value
of a read,

• a strict partial happens-before order hb, which includes ro and rf, representing the causality
constraints in an execution, and

• a strict total linearization order lin, which includes hb, used to model con�ict resolution
policies based on timestamps.

In this work, we consider replicated data types which satisfy causal consistency [68], i.e., updates
which are related by cause and e�ect relations are observed by all replicas in the same order. This
follows from the fact that the happens-before order is constrained to be a partial order, and thus
transitive (other forms of weak consistency don’t pose this constraint). Some of the replicated
data types we consider in this work do not consider resolution policies based on timestamps and
in those cases, the linearization order can be ignored.
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2.1 A Logical Characterization of Replicated Data Types

ReadFrom(R)

∀o1, o2. rf(o1, o2)⇒ R(o1, o2)

ReadFromMaximal(R)

∀o1, o2, o3. rf(o1, o2) ∧R(o3, o2)⇒
¬hb(o1, o3) ∨ ¬hb(o3, o2)

ReadAllMaximals(R)

∀o1, o2. hb(o1, o2) ∧R(o1, o2)
⇒ ∃o3. hb∗(o1, o3) ∧ rf(o3, o2)

ClosedRF(R)

∀o1, o2, o3. R(o1, o2) ∧ hb(o1, o3)

∧ rf(o3, o2)⇒ rf(o1, o2)

RetvalSet(X, v, Y )

∀o1.meth(o1) = X ∧ ret(o1) = v

⇔ ∃o2. rf(o2, o1) ∧meth(o2) = Y

∧ arg(o1) = arg(o2)

RetvalCounter
∀o1.meth(o1) = read

⇒ ret(o1) = |{o2 : meth(o2) = inc ∧ rf(o2, o1)}|
− |{o2 : meth(o2) = dec ∧ rf(o2, o1)}|

LinLWW
∀o1, o2, o3. rf(o1, o2) ∧meth(o3) = write

∧ arg1(o3) = arg(o2) ∧ hb(o3, o2)⇒ lin(o3, o1)

RetvalReg
∀o1, v.meth(o1) = read ∧ v ∈ ret(o1)⇒ ∃!o2.rf(o2, o1) ∧meth(o2) = write ∧ arg2(o2) = v

Figure 2.1: The axiomatic semantics of replicated data types. Quanti�ed variables are implicitly distinct,
and ∃!o denotes the existence of a unique operation o.

A replicated data type is de�ned by a set of �rst-order axioms Φ characterizing the relations in an
abstract execution. A history h is admitted by a data type when there exists an abstract execution
e such that 〈h, e〉 |= Φ. The satisfaction relation |= is de�ned as usual in �rst order logic. The
admissibility problem is the problem of checking whether a history h is admitted by a given data
type.

In the following, we de�ne the replicated data types with respect to which we study the com-
plexity of the admissibility problem. The axioms used to de�ne them are listed in Figure 2.1 and
Figure 2.2. These axioms use the function symbols meth-od, arg-ument, and ret-urn interpreted
over operation labels, whose semantics is self-explanatory.

2.1.1 Replicated Sets and Flags

The Add-Wins Set and Remove-Wins Set [88] are two implementations of a replicated set with op-
erations add(x), remove(x), and contains(x) for adding, removing, and checking membership of
an element x. Although the meaning of these methods is self-evident from their names, the result
of con�icting concurrent operations is not evident. When concurrent add(x) and remove(x) op-
erations are delivered to a certain replica, the Add-Wins Set chooses to keep the element x in the
set, so every subsequent invocation of contains(x) on this replica returns true , while the Remove-
Wins Set makes the dual choice of removing x from the set.

The formal de�nition of their semantics uses abstract executions where the read-from relation
associates sets of add(x) and remove(x) operations to contains(x) operations. Therefore, the
predicate ReadOk(o1, o2) is de�ned by

meth(o1) ∈ {add, remove} ∧meth(o2) = contains ∧ arg(o1) = arg(o2)
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2 Checking Consistency for Conflict-Free Replicated Data Types

and the Add-Wins Set is de�ned by the following set of axioms:

ReadFrom(ReadOk) ∧ ReadFromMaximal(ReadOk)∧
ReadAllMaximals(ReadOk) ∧ RetvalSet(contains, true, add)

ReadFromMaximal says that every operation read by a contains(x) is maximal among its hb-
predecessors that add or remove x while ReadAllMaximals says that all such maximal hb-
predecessors are read. The RetvalSet instantiation ensures that a contains(x) returns true i�
it reads-from at least one add(x).

The de�nition of the Remove-Wins Set is similar, except for the parameters of RetvalSet,
which becomeRetvalSet(contains, false, remove), i.e., a contains(x) returns false i� it reads-
from at least one remove(x).

The Enable-Wins Flag and Disable-Wins Flag are implementations of a set of �ags with oper-
ations: enable(x), disable(x), and read(x), where enable(x) turns the �ag x to true, disable(x)
turns x to false, while read(x) returns the state of the �ag x. Their semantics is similar to the
Add-Wins Set and Remove-Wins Set, respectively, where enable(x), disable(x), and read(x) play
the role of add(x), remove(x), and contains(x), respectively. Their axioms are de�ned as above.

2.1.2 Replicated Registers

We consider two variations of replicated registers called Multi-Value Register (MVR) and Last-
Writer-Wins Register (LWW) [88] which maintain a set of registers and provide write(x,v) op-
erations for writing a value v on a register x and read(x) operations for reading the content of
a register x (the domain of values is kept unspeci�ed since it is irrelevant). While a read(x) op-
eration of MVR returns all the values written by concurrent writes which are maximal among
its happens-before predecessors, therefore, leaving the responsibility for solving con�icts between
concurrent writes to the client, a read(x) operation of LWW returns a single value chosen using
a con�ict-resolution policy based on timestamps. Each written value is associated to a timestamp,
and a read operation returns the most recent value w.r.t. the timestamps. This order between
timestamps is modeled using the linearization order of an abstract execution.

Therefore, the predicate ReadOk(o1, o2) is de�ned by

meth(o1) = write ∧meth(o2) = read ∧ arg1(o1) = arg(o2) ∧ arg2(o1) ∈ ret(o2)

(we use arg1(o1) to denote the �rst argument of a write operation, i.e., the register name, and
arg2(o1) to denote its second argument, i.e., the written value) and the MVR is de�ned by the
following set of axioms:

ReadFrom(ReadOk) ∧ ReadFromMaximal(ReadOk)∧
ReadAllMaximals(ReadOk) ∧ RetvalReg

where RetvalReg ensures that a read(x) operation reads from a write(x,v) operation, for each
value v in the set of returned values 1.

1For simplicity, we assume that every history contains a set of write operations writing the initial values of variables,
which precede every other operation in replica order.
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2.1 A Logical Characterization of Replicated Data Types

ReadFromRGA
∀o2.meth(o2) = addAfter⇒ arg1(o2) = ◦ ∨

∃o1.meth(o1) = addAfter ∧ arg2(o1) = arg1(o2) ∧ rf(o1, o2)

∧meth(o2) = remove⇒ ∃o1.meth(o1) = addAfter ∧ arg2(o1) = arg(o2) ∧ rf(o1, o2)

∧ meth(o2) = read⇒ ∀v ∈ ret(o2) ∃o1.meth(o1) = addAfter ∧ arg2(o1) = v ∧ rf(o1, o2)

RetvalRGA
∀o1, o2.meth(o1) = read ∧meth(o2) = addAfter ∧ hb(o2, o1) ∧ arg2(o2) 6∈ ret(o1)

⇒ ∃o3.meth(o3) = remove ∧ arg(o3) = arg2(o2) ∧ rf(o3, o1)

LinRGA
∀o1, o2.

(
meth(o1) = meth(o2) = addAfter ∧ arg1(o1) = arg1(o2)∧
∃o3, o4, o5.meth(o3) = meth(o4) = addAfter ∧ rf∗addAfter(o1, o3) ∧ rf∗addAfter(o2, o4)∧
meth(o5) = read ∧ arg2(o4) <o5 arg2(o3)

)
⇒ lin(o1, o2)

Figure 2.2: Axioms used to de�ne the semantics of RGA.

LWW is obtained from the de�nition of MVR by replacingReadAllMaximalswith the ax-
iomLinLWWwhich ensures that everywrite(x,_) operation which happens-before a read(x) op-
eration is linearized before the write(x,_) operation from where the read(x) takes its value (when
these twowriteoperations are di�erent). This de�nition of LWW is inspired by the “bad-pattern”
characterization in [21], corresponding to their causal convergence criterion.

2.1.3 Replicated Counters

The replicated counter datatype [88] maintains a set of counters interpreted as integers (the coun-
ters can become negative). This datatype provides operations inc(x) and dec(x) for incrementing
and decrementing a counter x, and read(x) operations to read the value of the counter x. The
semantics of the replicated counter is quite standard: a read(x) operation returns the value com-
puted as the di�erence between the number of inc(x) operations and dec(x) operations among
its happens-before predecessors. The axioms de�ned below will enforce the fact that a read(x)
operation reads-from all its happens-before predecessors which are inc(x) or dec(x) operations.

Therefore, the predicate ReadOk(o1, o2) is de�ned by

meth(o1) ∈ {inc, dec} ∧meth(o2) = read ∧ arg(o1) = arg(o2)

and the replicated counter is de�ned by the following set of axioms:

ReadFrom(ReadOk) ∧ ClosedRF(ReadOk) ∧ RetvalCounter.

2.1.4 Replicated Growable Array

The Replicated Growing Array (RGA) [86] is a replicated list used for text-editing applications.
RGA supports three operations: addAfter(a,b) which adds the character b immediately after the
occurrence of the character a assumed to be present in the list, remove(a) which removes a as-
sumed to be present in the list, and read() which returns the list contents. It is assumed that a
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2 Checking Consistency for Conflict-Free Replicated Data Types

character is added at most once 2. The con�icts between concurrent addAfter operations that
add a character immediately after the same character is solved using timestamps (i.e., each added
character is associated to a timestamp and the order between characters depends on the order be-
tween the corresponding timestamps), which in the axioms below are modeled by the linearization
order.

Figure 2.2 lists the axioms de�ning RGA. ReadFromRGA ensures that:

• everyaddAfter(a,b) operation reads-from theaddAfter(_,a) adding the charactera, except
when a = ◦which denotes the “root” element of the list3,

• every remove(a) operation reads-from the operation adding a, and

• every read operation returning a list containing a reads-from the operation addAfter(_,a)
adding a.

Then, RetvalRGA ensures that a read operation o1 happening-after an operation adding a
character a reads-from a remove(a) operation when a doesn’t occur in the list returned by o1 (the
history must contain a remove(a) operation because otherwise, a should have occurred in the list
returned by the read).

Finally, LinRGA models the con�ict resolution policy by constraining the linearization order
between addAfter(a,_) operations adding some character immediately after the same charactera.
As a particular case,LinRGA enforces thataddAfter(a,b) is linearized beforeaddAfter(a,c) when
a readoperation returns a list where cprecedes b (addAfter(a,b) results in the lista·b and applying
addAfter(a,c) on a · b results in the list a · c · b). However, this is not su�cient: assume that the
history contains the two operations addAfter(a,b) and addAfter(a,c) along with two operations
remove(b) and addAfter(b,d). Then, a read operation returning the list a · c · d must enforce
that addAfter(a,b) is linearized before addAfter(a,c) because this is the only order between these
two operations that can lead to the result a · c · d, i.e., executing addAfter(a,b), addAfter(b,d),
remove(b), addAfter(a,c) in this order. LinRGA deals with any scenario where arbitrarily-many
characters can be removed from the list: rf∗addAfter is the re�exive and transitive closure of the
projection of rf on addAfter operations and<o5 denotes the order between characters in the list
returned by the read operation o5.

2.2 Intractability for Registers, Sets, Flags, and Counters

In this section, we demonstrate that checking the consistency is intractable for many widely-used
data types. While this is not completely unexpected, since some related consistency-checking
problems like sequential consistency are also intractable [54], this contrasts recent tractability re-
sults for checking strong consistency (i.e., linearizability) of common non-replicated data types
like sets, maps, and queues [43]. In fact, in many cases, we show that intractability even holds if
the number of replicas is �xed.

Our proofs of intractability follow the general structure of Gibbons and Korach’s proofs for
the intractability of checking sequential consistency (SC) for atomic registers with read and write

2In a practical context, this can be enforced by tagging characters with replica identi�ers and sequence numbers.
3This element is not returned by read operations.

14



2.2 Intractability for Registers, Sets, Flags, and Counters

Replica 0 Replica 1 Replica 2

Round 0


Enable(x1) Disable(x1)
. . . . . .
Enable(xn) Disable(xn)

Barrier 1


Enable(y0) Enable(y1) Enable(y2)
Read(y1) = true Read(y0) = true Read(y0) = true
Read(y2) = true Read(y2) = true Read(y1) = true

Round 1


Read(α1) = true Read(β1) = true Read(γ1) = true
Read(β1) = false Read(γ1) = false Read(α1) = false
Read(γ1) = false Read(α1) = false Read(β1) = false
Disable(α1) Disable(β1) Disable(γ1)
Enable(β1) Enable(γ1) Enable(α1)

Barrier 2


Disable(y0) Disable(y1) Disable(y2)
Read(y1) = false Read(y0) = false Read(y0) = false
Read(y2) = false Read(y2) = false Read(y1) = false

. . . . . . . . .

Round m


Read(αm) = true Read(βm) = true Read(γm) = true
Read(βm) = false Read(γm) = false Read(αm) = false
Read(γm) = false Read(αm) = false Read(βm) = false
Disable(αm) Disable(βm) Disable(γm)
Enable(βm) Enable(γm) Enable(αm)

Figure 2.3: The encoding of a 1-in-3 SAT problem
∧m

i=1(αi ∨ βi ∨ γi) over variables x1, . . . , xn as a 3-
replica history of a �ag data type. Besides the �ag variable xj for each propositional variable xj ,
the encoding adds per-replica variables yj for synchronization barriers.

operations [54]. In particular, we reduce a specialized type of NP-hard propositional satis�ability
(SAT) problem to checking whether histories are admitted by a given data type. While our con-
struction borrows from Gibbons and Korach’s, the adaptation from SC to CRDT consistency
requires a signi�cant extension to handle the consistency relaxation represented by abstract exe-
cutions: rather than a direct sequencing of threads’ operations, CRDT consistency requires the
construction of three separate relations: read-from, happens-before, and linearization.

Technically, our reductions start from the 1-in-3 SAT problem [53]: given a propositional for-
mula

∧m
i=1(αi ∨ βi ∨ γi) over variables x1, . . . , xn with only positive literals, i.e., αi, βi, γi ∈

{x1, . . . , xn}, does there exist an assignment to the variables such that exactly one of αi, βi, γi
per clause is assigned true? The proofs of Theorems 2.2.1 and 2.2.2 reduce 1-in-3 SAT to CRDT
consistency checking.

Theorem 2.2.1. The admissibility problem is NP-hard when the number of replicas is fixed for
the following data types: Add-Wins Set, Remove-Wins Set, Enable-Wins Flag, Disable-Wins Flag,
Multi-Value Register, and Last-Writer-Wins Register.

Proof. We demonstrate a reduction from the 1-in-3 SAT problem. For a given problem p =∧m
i=1(αi ∨ βi ∨ γi) over variables x1, . . . , xn, we construct a 3-replica history hp of the �ag

data type — either enable- or disable-wins — as illustrated in Figure 2.3. The encoding includes a
�ag variable xj for each propositional variable xj , along with a per-replica �ag variable yj used to
implement synchronization barriers. Intuitively, executions of hp proceed inm + 1 rounds: the
�rst round corresponds to the assignment of a truth valuation, while subsequent rounds check
the validity of each clause given the assignment. The reductions to sets and registers are slight
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2 Checking Consistency for Conflict-Free Replicated Data Types

variations on this proof, in which the Read, Enable, and Disable operations are replaced with
Contains, Add, and Remove, respectively, and Read and Writes of values 1 and 0, respectively.

It su�ces to show that the constructed historyhp is admitted if and only if the given problem p
is satis�able (it is easy to see that the size ofhp is linear in the size of p, and thathp can be computed
in linear time). Since the �ag data type does not constrain the linearization relation of its abstract
executions, we regard only the read-from and happens-before components. The construction of
hp ensures the happens-before relations of its abstract executions:

1. does not interleave operations from di�erent rounds. Each consecutive rounds are sepa-
rated by the barriers in happens-before relations; and

2. at each round, only one replica, say replica i, can �nish its Reads then �nish its Enables/Disables,
then (i+1) mod 3 replica can �nish its Reads and so on. And these Enables/Disables from
one round are totally ordered between replicas by the happens-before relation.

In other words, replicas appear to execute atomically per round, in a round-robin fashion.
Furthermore, since all operations in a given round happen before the operations of subsequent
rounds, the values of �ag variables are consistent across rounds — i.e., as read by the �rst replica
to execute in a given round — and determined in the initial round either by con�ict resolution
— i.e., enable- or disable-wins — or by happens-before, in case of con�ict resolution would have
been inconsistent with subsequent reads.

The correctness of the construction is stated in the following lemma:

Lemma 2.2.1. p =
∧m
i=1(αi ∨ βi ∨ γi) is satisfiable if and only if hp is admissible

Proof. (Only-if direction). Assume that
∧1
i=1(αi∨βi∨γi) is satis�able, i.e., there exists a variable

assignment γ for which each clause has exactly one literal interpreted as true.
We construct a happens-before relation hb such that: (1) if γ(xi) = false, thenEnable(xi)

in Replica 0 is visible to Disable(xi) in Replica 1, i.e. (Enable(xi), Disable(xi)) ∈ hb (this
ensures that the value of xi is false after Barrier 1), and similarly, (2) if γ(xi) = true, then
(Disable(xi), Enable(xi)) ∈ hb. Note this does not introduce any cycle in hb because xis are
Enabled and Disabled in the same order in Replica 0 and Replica 1.

Then, for each barrier i, all the Enable operations happen-before all the Read operations. Also,
for each round i, if αi is true in clause i (w.r.t. γ), then we make all the operations of the round
i at replica 0 happen-before operations of the round i at replica 1, and all the operations of the
round i at replica 1 happen-before operations of the round i at replica 2. This makes the history
admissible because if α1 is true, then β1 and γ1 are false. So the reads of round i at replica 0 are
correct. Then the updates of round i at replica 0 make α1 false and β1 true (γ1 remains false).
So now, the reads of round i at replica 1 are also correct. The same reasoning can be applied for
the reads at replica 2. The cases βi true or γi true lead to a similar de�nition of happens-before,
ordering replicas in the order 1, 2, 0 if βi is true, and 2, 0, 1, if γ1 is true. A straightforward proof
by induction allows to prove that the history is admissible w.r.t. a happens-before relation de�ned
in this manner.

(If direction). Assume that hp is admissible. We give a series of lemmas that characterize the
happens-before (read-from) relation of hp.

Lemma 2.2.2. The Reads of each barrier read-from the Enables or Disables of the same barrier.
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2.2 Intractability for Registers, Sets, Flags, and Counters

Proof. We give a proof by induction on the number of the barrier.
(Base case). Note that only replica i Enables or Disables yi. Assume by contradiction that at
barrier 1, Read(yj) = true at replica i reads from an operation in a barrier other than 1. Then,
it must read from an operation of barrier 3 at least (yj is set to true at odd numbered barriers).
Now at barrier 2 and replica j, Read(yi) = false reads from a Disable because replica j has
Read(yi) = true at barrier 1. So at barrier 2 and replica j, Read(yi) = false can read from
a Disable which is at even numbered barriers, at least from barrier 2. This de�nes a cycle in the
happens-before order, which contradicts the admissibility of hp:

• Enable(yj) at barrier≥ 3 and replica j happens-before Read(yj) = true at barrier 1 and
replica i because of read-from,

• Read(yj) = true at barrier 1 and replica i happens-before Disable(yi) at barrier≥ 2 and
replica i,

• Disable(yi) at barrier ≥ 2 and replica i happens-before Read(yi) = false at barrier 2
and replica j because of read-form, and

• Read(yi) = false at barrier 2 and replica j happens-before Enable(yj) at barrier≥ 3
and replica j.

(Induction step). By the induction hypothesis, barrier k always reads from barrier k itself. There-
fore, Read(yj) of barrier (k + 1) happens after the update of yj from barrier k. Without loss
of generality, let us assume that barrier k contains Enable operations. Since barrier k contains
Enable operations, the false reads in barrier (k + 1) must read from a barrier strictly greater
than k. Using the same logic from the base case, this would imply a cycle in the happens-before
relation.

Lemma 2.2.2 ensures that all the operations from all replicas before barrier i happen before
every operation (from any replica) after barrier i.

We say that two Read operations see the same value ofxi when one Read reads-from an Enable(xi)
if and only if the other Read also reads-from an Enable(xi) (these Enable operations may not be
the same). Also, a read in a round k is called initial if it does not happen before an Enable or
Disable from the same round.

Lemma 2.2.3. Initial Reads of two consecutive rounds see the same value of xi, for each i.

Proof. Note that the Reads from each round read only from updates from the same round or
from preceding rounds. Reading from any later round is not possible, because, by Lemma 2.2.2,
that will introduce a happen-before cycle between the current round and that later round. Also,
in each round, there exist one replica which does not read-from other replicas in the same round.
If replica p is reading from replica q, then replica q again can not read from replica p, because it
will create a cycle in hb between replica p and q in the same round. So replica q has to read from
replica r. But then replica r will have to read from replica p, which creates a cycle between replica
p, q, and r in the same round.
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2 Checking Consistency for Conflict-Free Replicated Data Types

So there exists one replica, which reads-from updates till last round. Since the Reads of that
replica are successful, it ensures only one ofαk, βk, γk are true i.e. only one of those Reads reads-
from an Enable. Hence, the �rst true Reads at other replicas must read-from the updates in the
same round. Therefore, all the operations from a round k ≥ 1 are totally ordered w.r.t. the
happens-before, all operations in one replica before all operations in another. That is, if replica 0
was the �rst one to �nish its reads, Read(βk) = true reads-from Enable(βk) and Read(γk) =
true reads-from Enable(γk). Since the updates are totally ordered and they only �ip the read
values of xi twice, i.e. if the �rst read on xi is false, then it does not read-from any Enable till
round (k − 1) and at round k, after Read(xi) = false, Enable(xi) and Disable(xi) are
ordered by hb. So the hb-maximal update on xi on round k stays Disable(xi). Similarly we can
show, the hb-maximal update on xi on round k stays Enable(xi) when the �rst Read(xi) was
true.

When round (k + 1) begins, because of Lemma 2.2.2, it “sees” all the updates at the end of
round k, which includes the updates from earlier rounds.

• If xi is not modi�ed in round k, then round (k+ 1) will read-from from the same update
for xi as round k.

• If xi is modi�ed in round k, any hb-maximal Read(xi) at round (k + 1) will read-form
hb-maximal updates at round k by lemma 2.2.2. And, the hb-maximal update on xi at the
end of round k stays the same as the update which round k read-form at the beginning.

Going back to the proof of Lemma 2.2.1, p is satis�able using an assignment de�ned by the
initial Reads of each round (which see the same values by Lemma 2.2.3). This assignment satis�es
the 1-in-3 SAT formula p because at each round, there is a replica that happens-before operations
in the same round at the other replicas, and the Reads of that replica see exactly one �ag as true.

Theorem 2.2.1 establishes intractability of consistency for the aforementioned sets, �ags, and
registers, independently from the number of replicas. In contrast, our proof of Theorem 2.2.2 for
counter data types depends on the number of replicas, since our encoding requires two replicas
per propositional variable. Intuitively, since counter increments and decrements are commutative,
the initial round in the previous encoding would have �xed all counter values to zero. Instead, the
next encoding isolates initial increments and decrements to independent replicas.

Theorem 2.2.2. The admissibility problem for the Counter data type is NP-hard.

We demonstrate a reduction from the 1-in-3 SAT problem. For a given problemp =
∧m
i=1(αi∨

βi∨γi) over variables x1, . . . , xn, we construct a history hp of the counter data type over 2n+3
replicas, as illustrated in Figure 2.4.

Besides the di�erences imposed due to the commutativity of counter increments and decre-
ments, our reduction follows the same strategy as in the proof of Theorem 2.2.1: the happens-
before relation of hp’s abstract executions order every pair of operations in distinct rounds (of
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2.3 Polynomial-Time Algorithms

Replica 0 Replica 2j+1 Replica 2j+2

Round 0


Inc(y) Inc(y)
Inc(xj) Dec(xj)

Read(y) = n

Replica 1 Replica 2

Barrier 1


Inc(y0) Inc(y1) Inc(y2)
Read(y1) = 1 Read(y2) = 1 Read(y0) = 1
Read(y2) = 1 Read(y0) = 1 Read(y1) = 1

Round 1


Read(α1) = 1 Read(β1) = 1 Read(γ1) = 1
Read(β1) = −1 Read(γ1) = −1 Read(α1) = −1
Read(γ1) = −1 Read(α1) = −1 Read(β1) = −1
Dec(α1); Dec(α1) Dec(β1); Dec(β1) Dec(γ1); Dec(γ1)
Inc(β1); Inc(β1) Inc(γ1); Inc(γ1) Inc(α1); Inc(α1)

Barrier 2


Dec(y0) Dec(y1) Dec(y2)
Read(y1) = 0 Read(y2) = 0 Read(y0) = 0
Read(y2) = 0 Read(y0) = 0 Read(y1) = 0

. . . . . . . . .

Roundm


Read(αm) = 1 Read(βm) = 1 Read(γm) = 1
Read(βm) = −1 Read(γm) = −1 Read(αm) = −1
Read(γm) = −1 Read(αm) = −1 Read(βm) = −1
Dec(αm); Dec(αm) Dec(βm); Dec(βm) Dec(γm); Dec(γm)
Inc(βm); Inc(βm) Inc(γm); Inc(γm) Inc(αm); Inc(αm)

Barrierm+1


Inc(y0) or Dec(y0) Inc(y1) or Dec(y1) Inc(y2) or Dec(y2)
Read(y1) = 1 or 0 Read(y2) = 1 or 0 Read(y0) = 1 or 0
Read(y2) = 1 or 0 Read(y0) = 1 or 0 Read(y1) = 1 or 0

Roundm+1
{

Read(y) = n

Figure 2.4: The encoding of a 1-in-3 SAT problem
∧m

i=1(αi ∨ βi ∨ γi) over variables x1, . . . , xn as the
history of a counter over 2n + 3 replicas. Besides the counter variables xj encoding proposi-
tional variables xj , the encoding adds a variable y encoding the number of initial increments
and decrements, and a variable z to implement synchronization barriers.

Replicas 0–2), and every operation in a given (non-initial) round. As before, Replicas 0–2 appear
to execute atomically per round, in a round-robin fashion, and counter variables are consistent
across rounds. The key di�erence is that here abstract executions’ happens-before relations only
relate the operations of either Replica 2j+1 or 2j+2, for each j = 1, . . . , n, to operations in sub-
sequent rounds: the other’s operations are never observed by other replicas. Our encoding ensures
that exactly one of each is observed by ensuring that the counter y is incremented exactly n times
— and relying on the fact that every variable appears in some clause so that a read that observed
neither or both would yield the value zero, which is inconsistent with hp. Otherwise, our reason-
ing follows the proof of Theorem 2.2.1, in which the read-from relation selects all increments and
decrements of the same counter variable in happens-before order.

2.3 Polynomial-Time Algorithms

2.3.1 Registers and Arrays

We show that the problem of checking consistency is polynomial time for RGA, and even for
LWW and MVR under the assumption that each value is written at most once, i.e., for each value
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2 Checking Consistency for Conflict-Free Replicated Data Types

Input: A di�erentiated history h = 〈Op, ro〉 and a datatype T .
Output: true i� h satis�es the axioms of T .

1 rf← ComputeRF(h,ReadFrom[T ],Retval[T ] );
2 if rf = ⊥ then return false;
3 hb← (ro ∪ rf)+;
4 if hb is cyclic or 〈h, rf, hb〉 6|= ReadFromMaximal[T ] ∧ ReadAllMaximals[T ] then
5 return false;
6 lin← hb;
7 lin← LinClosure(hb,Lin[T ]);
8 if lin is cyclic then return false;
9 return true;

Algorithm 1: Consistency checking for RGA, LWW, and MVR. Re. . . [T ] refers to an
axiom of T , or true when T lacks such an axiom. The relation R+ denotes the transitive
closure ofR.

v, the input history contains at most one write operation write(x,v). Histories satisfying this as-
sumption are called di�erentiated. The latter is a restriction motivated by the fact that practical
implementations of these datatypes are data-independent [96], i.e., their behavior doesn’t depend
on the concrete values read or written and any potential buggy behavior can be exposed in execu-
tions where each value is written at most once. Also, in a testing environment, this restriction can
be enforced by tagging each value with a replica identi�er and a sequence number.

In all three cases, the feature that enables polynomial time consistency checking is the fact that
the read-from relation becomes �xed for a given history, i.e., if the history is consistent, then there
exists exactly one read-from relation rf that satis�es the ReadFrom_ and Retval_ axioms, and
rf can be derived syntactically from the operation labels (using those axioms). Then, our axiomatic
characterizations enable a consistency checking algorithm which roughly, consists in instantiating
those axioms in order to compute an abstract execution.

The consistency checking algorithm for RGA, LWW, and MVR is listed in Algorithm 1. It
computes the three relations rf, hb, and lin of an abstract execution using the datatype’s axioms.
The history is declared consistent i� there exist satisfying rf and hb relations, and the relations
hb and lin computed this way are acyclic. The acyclicity requirement comes from the de�nition
of abstract executions where hb and lin are required to be partial/total orders. While an abstract
execution would require that lin is a total order, this algorithm computes a partial linearization
order. However, any total order compatible with this partial linearization would satisfy the axioms
of the datatype.

ComputeRF computes the read-from relation rf satisfying theReadFrom_ andRetval_ ax-
ioms. In the case of LWW and MVR, it de�nes rf as the set of all pairs formed of write(x,v) and
read(x) operations where v belongs to the return value of the read. By Retval_, each read(x)
operation must be associated to at least one write(x,_) operation. Also, the fact that each value
is written at most once implies that this rf relation is uniquely de�ned, e.g., for LWW, it is not
possible to �nd two write operations that could be rf related to the same read operation. In gen-
eral, if there exists no rf relation satisfying these axioms, thenComputeRF returns a distinguished
value⊥ to signal a consistency violation. Note that the computation of the read-from for LWW
and MVR is quadratic time4 since the constraints imposed by the axioms relate only to the op-

4Assuming constant time lookup/insert operations (e.g., using hashmaps), this complexity is linear time.
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2.3 Polynomial-Time Algorithms

Input: A history h = 〈Op, ro〉 of RGA.
Output: An rf satisfying ReadFromRGA ∧ RetvalRGA, if exists;⊥ o/w

1 rf← {(o1, o2) : meth(o1) = addAfter,meth(o2) ∈ {addAfter, remove, read}, arg2(o1) =
arg1(o2) ∨ arg2(o1) ∈ ret(o2)};

2 if 〈h, rf〉 6|= ReadFromRGA then return⊥ ;
3 while true do
4 rf1 ← ∅;
5 foreach o1, o2 ∈ Op s.t. 〈o2, o1〉 ∈ (rf ∪ ro)+ and meth(o1) = read and meth(o2) = addAfter

and arg2(o2) 6∈ ret(o1) do
6 if ∃o3 ∈ Op s.t. meth(o3) = remove and arg(o3) = arg2(o2) then
7 rf1 ← rf1 ∪ {〈o3, o1〉};
8 else
9 return⊥;

10 if rf1 ⊆ rf then break;
11 else rf← rf ∪ rf1;
12 return rf;

Algorithm 2: The procedure ComputeRF for RGA.

eration labels, the methods they invoke or their arguments. The case of RGA is slightly more
involved because the axiom RetvalRGA introduces more read-from constraints based on the
happens-before order which includes ro and the rf itself. In this case, the computation of rf relies
on a �xpoint computation, which converges in at most quadratic time (the maximal size of rf),
described in Algorithm 2. Essentially, we use the axiom ReadFromRGA to populate the read-
from relation and then, apply the axiomRetvalRGA iteratively, using the read-from constraints
added in previous steps, until the computation converges.

After computing the read-from relation, our algorithm de�nes the happens-before relation hb
as the transitive closure of ro union rf. This is sound because none of the axioms of these datatypes
enforce new happens-before constraints, which are not already captured by ro and rf. Then, it
checks whether the hb de�ned this way is acyclic and satis�es the datatype’s axioms that constrain
hb, i.e., ReadFromMaximal and ReadAllMaximals(when they are present).

Finally, in the case of LWW and RGA, the algorithm computes a (partial) linearization order
that satis�es the corresponding Lin_ axioms. Starting from an initial linearization order which is
exactly the happens-before, it computes new constraints by instantiating the universally quan-
ti�ed axioms LinLWW and LinRGA. Since these axioms are not “recursive”, i.e., they don’t
enforce linearization order constraints based on other linearization order constraints, a standard
instantiation of these axioms is enough to compute a partial linearization order such that any ex-
tension to a total order satis�es the datatype’s axioms.

Theorem 2.3.1. Algorithm 1 returns true i� the input history is consistent.

The following holds because Algorithm 1 runs in polynomial time — the rank depends on the
number of quanti�ers in the datatype’s axioms. Indeed, Algorithm 1 represents a least �xpoint
computation which converges in at most a quadratic number of iterations (the maximal size of
rf).

Corollary 2.3.1. The admissibility problem is polynomial time for RGA, and for LWW and
MVR on di�erentiated histories.
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2 Checking Consistency for Conflict-Free Replicated Data Types

Input: History h = (Op, ro), pre�x mapm, and set seen of invalid pre�x maps
Output: false if there exists no read-from and happens-before relations rf and hb such thatm ⊆ hb, and

〈h, rf, hb〉 satis�es the counter axioms.
1 if m is complete then return true;
2 foreach replica i do
3 foreach replica j 6= i do
4 m′ ← m[i← m(i) ∪m(j)];
5 if m′ 6∈ seen and checkCounter(h,m′, seen) then
6 return true;
7 seen ← seen ∪ {m′};
8 if ∃o1. ro1(lasti(m), o1) then
9 if meth(o1) = read and

arg(o1) = x ∧ ret(o1) 6= |{o ∈ m[i]|o = inc(x)}| − |{o ∈ m[i]|o = dec(x)}| then
10 return false;
11 m′ ← m[i← m(i) ∪ {o1}];
12 if m′ 6∈ seen and checkCounter(h,m′, seen) then
13 return true;
14 seen ← seen ∪ {m′};
15 return false;

Algorithm 3: The procedure checkCounter, where ro1 denotes immediate ro-successor,
and f [a← b] updates function f with mapping a 7→ b.

2.3.2 Replicated Counters

In this section, we propose a sound polynomial time algorithm for replicated counter datatype
assuming the number of replicas in the input history is �xed (i.e. the width of the rpelica order ro
is �xed). The algorithm constructs a valid happens-before order (note that the semantics of the
replicated counter doesn’t constrain the linearization order) incrementally, following the replica
order. At any time, the happens-before order is uniquely determined by a prefix mapping that
associates to each replica a prefix of the history, i.e., a set of operations which is downward-closed
w.r.t. replica order (i.e., if it contains an operation it contains all of its ro predecessors). This mod-
els the fact that the replica order is included in the happens-before and therefore, if an operation
o1 happens-before another operation o2, then all the ro predecessors of o1 happen-before o2. The
happens-before order can be extended in two ways: (1) adding an operation issued on the replica
i to the pre�x of replica i, or (2) “merging” the pre�x of a replica j to the pre�x of a replica i (this
models the delivery of an operation issued on replica j and all its happens-before predecessors to
the replica i). Verifying that an extension of the happens-before is valid, i.e., that the return val-
ues of newly-added read operations satisfy the RetvalCounter axiom, doesn’t depend on the
happens-before order between the operations in the pre�x associated to some replica (it is enough
to count the inc and dec operations in that pre�x). Therefore, the algorithm can be seen as a
search in the space of pre�x mappings. If the number of replicas in the input history is �xed, then
the number of possible pre�x mappings is polynomial in the size of the history, which implies that
the search can be done in polynomial time.

Let h = (Op, ro) be a history. To simplify the notations, we assume that the replica order
is a union of sequences, each sequence representing the operations issued on the same replica.
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2.3 Polynomial-Time Algorithms

Therefore, each operation o ∈ Op is associated with a replica identi�er rep(o) ∈ [1..nh], where
nh is the number of replicas in h.

A prefix of h is a set of operation Op′ ⊆ Op such that all the ro predecessors of operations in
Op′ are also in Op′, i.e., ∀o ∈ Op. ro−1(o) ∈ Op. Note that the union of two pre�xes of h is
also a pre�x of h. The last operation of replica i in a pre�x Op′ is the ro-maximal operation owith
rep(o) = i included in Op′. A pre�x Op′ is called valid if (Op′, ro′), where ro′ is the projection
of ro on Op′, is admitted by the replicated counter.

A prefix map is a mapping m which associates a pre�x of h to each replica i ∈ [1..nh]. In-
tuitively, a pre�x map de�nes for each replica i the set of operations which are “known” to i,
i.e., happen-before the last operation of i in its pre�x. Formally, a pre�x map m is included in a
happens-before relation hb, denoted by m ⊆ hb, if for each replica i ∈ [1..nh], hb(o, oi) for
each operation in o ∈ m(i) \ {oi}, where oi is the last operation of i inm(i). We call oi the last
operation of i in m, and denoted it by lasti(m). A pre�x map m is valid if it associates a valid
pre�x to each replica, and complete if it associates the whole history h to each replica i.

Algorithm 3 lists our algorithm for checking consistency of replicated counter histories. It is
de�ned as a recursive procedure checkCounter that searches for a sequence of valid extensions
of a given pre�x map (initially, this pre�x map is empty) until it becomes complete. The axiom
RetvalCounter is enforced whenever extending the pre�x map with a new read operation
(when the last operation of a replica i is “advanced” to a read operation). The following theorem
states the correctness of the algorithm.

Theorem 2.3.2. checkCounter(h, ∅, ∅) returns false if the input history is inconsistent.

When the number of replicas is �xed, the number of pre�x maps becomes polynomial in the size
of the history. This follows from the fact that pre�xes are uniquely de�ned by their ro-maximal
operations, whose number is �xed. Since the possible number of pre�x-map is polynomial when
the number of replicas is �xed, the algorithm 3 terminates after exploring polynomially many
states. Since the each step of the recursion happens in polynomial time, the algorithm always run
in polynomial time in the size of the history when the number of replicas is �xed.

Incompleteness. As a correction of our previous work [16], we show that Algorithm 3 is ac-
tually incomplete, i.e., it may return false while the history is admissible. The history of a replicated
counter in Figure 2.5 is a counterexample to completeness. This history admits a single read-from
relation as witness of admissibility, which is given by the edges in the �gure. [inc(a)]r1 must
propagate after [read(a) = 2]r2 and before [read(a) = 3]r2 . To simulate this propagation, the
algorithm must reach a pre�x map which had [inc(a)]r1 and [read(a) = 2]r2 as the ro-maximal
operations from each replica. Symmetrically, the same argument holds when [inc(a)]r2 needs to
propagate after [read(a) = 2]r1 and before [read(a) = 3]r1 . So the algorithm must reach an-
other pre�x map which had [inc(a)]r2 and [read(a) = 2]r1 as the ro-maximal operations from
each replica.

Since the algorithm always extends the maintained pre�x map i.e. when successful, the se-
quence of valid extensions from the empty pre�x map are always related by inclusion. But these
two pre�x-maps are not related by inclusion. So no sequence of extensions of empty pre�x map
will see both of them together, and the algorithm will return false because at least one of the
read(a) = 3 from one replica will be unsuccessful.
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r2

r1

inc(a)inc(a) read(a) = 2 read(a) = 3

inc(a)inc(a) read(a) = 2 read(a) = 3

Figure 2.5: An admissible execution of replicated counter for which Algorithm 3 returns false.

r2

r1

add(a)

contains(b) = false

contains(b) = true

add(b)

contains(a) = false

contains(a) = true

Figure 2.6: An admissible execution of replicated Add-Wins set for which Algorithm 4 returns false.

To construct hb incrementally, we would need to propagate a partial hb at arbitrary future
operations at each replica. Naively, this requires maintaining a pre�x map at each read operation
which is not included in current pre�x map. Although the number of possible pre�x maps is
polynomially bounded for a given history with a bounded number of replicas, maintaining n
pre�x maps at each read where n is linear in the size of the history, creates exponentially many
possible states to explore. The asymptotic complexity of checking admissibility for a Counter
history with a bounded number of replicas remains an open question.

2.3.3 Sets and Flags

While Theorem 2.2.1 shows that the admissibility problem is NP-complete for replicated sets and
�ags even if the number of replicas is �xed, we propose a sound algorithm which runs in polyno-
mial time when additionally, the number of values added to the set, or the number of �ags, is also
�xed. Note that this doesn’t limit the number of operations in the input history which can still
be arbitrarily large. In the following, we focus on the Add-Wins Set, the other cases being very
similar.

The algorithm for checking consistency is actually an extension of the one presented in Sec-
tion 2.3.2 for replicated counters. The additional complexity in checking consistency for the
Add-Wins Set comes from the validity of contains(x) return values which requires identifying
the maximal predecessors in the happens-before relation that add or removex (which are not nec-
essarily the maximal hb-predecessors all-together). In the case of counters, it was enough just to
count happens-before predecessors. Therefore, we extend the algorithm for replicated counters
such that along with the pre�x map, we also keep track of the hb-maximal add(x) and remove(x)
operations for each element x and each replica i. When extending a pre�x map with a contains
operation, these hb-maximal operations (which de�ne a witness for the read-from relation) are
enough to verify theRetValSet axiom. Extending the pre�x of a replica with an add or remove
operation (issued on the same replica), or by merging the pre�x of another replica, may require an
update of these hb-maximal predecessors.
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To represent the maximal hb-predecessors, we use a mapping u, called read-from map, that
associates a set of operations add(x) and remove(x) on di�erent replicas to each replica i and
element x. Note that two operations on the same replica are necessarily related by hb and cannot
be both maximal. A pair of pre�x-mapm and read-from mapude�nes a partial read-from relation
that associates all the operations in u(x, i) to the last operation of i, i.e., lasti(m), if this is a
contains(x) operation. For a given read-from relation rf, 〈m,u〉 ⊆ rf denotes the fact that this
partial read-from relation is included in rf. A pre�x m(i) is called valid in the context of a read-
from map u if it is admitted by the Add-Wins Set with a read-from relation rf such that 〈m,u〉 ⊆
rf. A pair 〈m,u〉 is called valid ifm(i) is valid for each replica i.

Algorithm 4 lists our algorithm for checking consistency of Add-Wins Set histories. As for repli-
cated counters, it is de�ned as a recursive procedure CheckAWSet that searches for a sequence of
valid extensions of a given pre�x map and read-from map (initially, both of them are empty) until
the pre�x map becomes complete.

Input: A history h = (Op, ro), a pre�x mapm, a read-from map u, and a set seen of invalid pre�x map and
read-from map pairs.

Output: false if there exists no read-from relation rf and happens-before order hb such thatm ⊆ hb,
〈m,u〉 ⊆ rf, and 〈h, rf, hb〉 satis�es the replicated Add-Wins Set axioms.

1 if m is complete then
2 return true;
3 foreach replica i do
4 foreach replica j 6= i do
5 m′ ← m[i← m(i) ∪m(j)];
6 u′(x)← u(x)[i← (u(x, i) \ (m(j) \ u(x, j)) ∪ (u(x, j) \ (m(i) \ u(x, i)))];
7 if 〈m′, u′〉 6∈ seen and CheckAWSet(h,m′, u′, seen) then
8 return true;
9 seen ← seen ∪ {〈m′, u′〉};

10 if ∃o1. ro1(lasti(m), o1) then
11 u′ ← u;
12 if meth(o1) = contains then
13 if ret(o1) = true ⇔6 ∃o2 ∈ u(arg(o1), i) st. meth(o2) = add∧ arg(o2) = arg(o1) then
14 return false;
15 else
16 u′(arg(o1), i)← {o1};
17 m′ ← m[i← m(i) ∪ {o1}];
18 if 〈m′, u′〉 6∈ seen and CheckAWSet(h,m′, u′, seen) then
19 return true;

20 seen ← seen ∪ {〈m′, u′〉};
21 return false;

Algorithm 4: The procedure CheckAWSet for checking consistency of Add-Wins Set.

The following theorem states the correctness of the algorithm.

Theorem 2.3.3. CheckAWSet(h, ∅, ∅, ∅) returns false if the input history is not consistent for the
Add-Wins Set.

When the number of replicas and elements are �xed, the number of read-from maps is poly-
nomial in the size of the history — recall that the number of operations associated by a read-from
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map to a replica and set element is bounded by the number of replicas. Since the possible number
of pre�x-map and read-from map is polynomial when the number of replicas and elements are
�xed, the algorithm 4 terminates after exploring polynomially many states. Since the each step of
the recursion happens in polynomial time, the algorithm always run in polynomial time in the
size of the history when the number of replicas and elements are �xed.

Incompleteness. This algorithm can be shown to be incomplete in a way similar to the Counter
case. This corrects a statement we have made in our previous work [16]. The history of Add-Wins
Set in Figure 2.6 is admissible while Algorithm 4 returns false . The explanations are similar to
the Counter example in Figure 2.5.

2.4 RelatedWork

Many have considered consistency models applicable to CRDTs, including causal consistency [68],
sequential consistency [67], linearizability [60], session consistency [90], eventual consistency [91],
and happens-before consistency [72]. Burckhardt et al. [26, 29] propose a unifying framework to
formalize these models. Many have also studied the complexity of verifying data-type agnostic
notions of consistency, including serializability, sequential consistency, and linearizability [5, 14,
20, 46, 54, 58, 80], as well as causal consistency [21]. Our de�nition of the replicated LWW register
corresponds to the notion of causal convergence in [21]. This work studies the complexity of the
admissibility problem for the replicated LWW register. It shows that this problem is NP-complete
in general and polynomial time when each value is written only once. Our NP-completeness re-
sult is stronger since it assumes a �xed number of replicas, and our algorithm for the case of unique
values is more general and can be applied uniformly to MVR and RGA. While Bouajjani et al. [19,
42] considers the complexity for individual linearizable collection types, we are the �rst to estab-
lish (in)tractability of individual replicated data types. Others have developed e�ective consistency
checking algorithms for sequential consistency [15, 27, 59, 84], serializability [36, 45, 46, 57], lin-
earizability [28, 44, 70, 95], and even weaker notions like eventual consistency [22] and sequential
happens-before consistency [41, 43]. In contrast, we are the �rst to establish precise polynomial-
time algorithms for runtime veri�cation of replicated data types.

2.5 Conclusion

In this chapter, we studied various CRDTs, namely Counter, Set, Flag, Registers, Growing Array.
We provide novel formal characterizations for these replicated data types, and study the asymp-
totic complexity of checking conformance for a given execution. We provide polynomial time
algorithms for Growing Array and Registers (when the read-from relation is �xed). For other
data types, we prove NP-completeness results based on polynomial time reductions from SAT
problems. Then, we provide sound polynomial time algorithms for Counters, Set, Flag when the
number of replicas and/or elements are bounded by a �xed constant. Since the latter algorithms
are not complete, the asymptotic complexity remains open in these cases.
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Consistency

In this chapter, we consider the issue of automated testing for transactional databases. More pre-
cisely, we focus on the complexity of checking correctness of an execution w.r.t. some transac-
tional consistency model. We consider several consistency models that are the most prevalent in
practice: Read Committed (RC) [12], Read Atomic (RA) [31], Causal Consistency (CC) [68], Pre-
fix Consistency (PC) [30], Snapshot Isolation (SI) [12], and Serializability (SER) [80]. In case of
intractability, we introduce algorithms that are polynomial time assuming �xed bounds for cer-
tain parameters of the input executions, e.g., the number of sessions.

We de�ne a new speci�cation framework for these consistency models that relies on the fact
that the write-read relation in an execution (also known as read-from), relating reads with the
transactions that wrote their value, can be de�ned e�ectively. The write-read relation can be ex-
tracted easily from executions where each value is written at most once (a variable can be written
an arbitrary number of times). This can be easily enforced by tagging values with unique identi-
�ers (e.g., a local counter that is incremented with every new write coupled with a client/session
identi�er)1. Since practical database implementations are data-independent [96], i.e., their behav-
ior doesn’t depend on the concrete values read or written in the transactions, any potential buggy
behavior can be exposed in executions where each value is written at most once. Therefore, this
assumption is without loss of generality.

Previous work [21, 29, 31] has formalized such consistency models using two auxiliary relations:
a visibility relation de�ning for each transaction the set of transactions it observes, and a commit
order de�ning the order in which transactions are committed to the “global” memory. An exe-
cution satisfying some consistency model is de�ned as the existence of a visibility relation and a
commit order obeying certain axioms. In our case, the write-read relation derived from the execu-
tion plays the role of the visibility relation. This simpli�cation allows us to state a series of axioms
de�ning these consistency models, which have a common shape. Intuitively, they de�ne lower
bounds on the set of transactions t1 that must precede in commit order a transaction t2 that is
read in the execution. Besides shedding a new light on the di�erences between these consistency
models, these axioms are essential for the algorithmic issues we investigate afterwards.

We establish the precise complexity for checking whether an execution satis�es RC, RA, or CC
is polynomial time, while the same problem is NP-complete for PC and SI. Moreover, in the case
of the NP-complete consistency models (PC, SI, SER), we show that their veri�cation problem
becomes polynomial time provided that, roughly speaking, the number of sessions in the input
executions is considered to be �xed (i.e., not counted for in the input size). We extend these results
even further by relying on an abstraction of executions called communication graphs [33]. Roughly

1This is also used in Jepsen, e.g., checking dirty reads in Galera [64].
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speaking, the vertices of a communication graph correspond to sessions, and the edges represent
the fact that two sessions access (read or write) the same variable. We show that all these criteria
are polynomial-time checkable provided that the biconnected components of the communication
graph are of �xed size.

We provide an experimental evaluation of our algorithms on executions of CockroachDB [34],
which claims to implement serializability [35] acknowledging however the possibility of anoma-
lies, Galera [49], whose documentation contains contradicting claims about whether it imple-
ments snapshot isolation [50, 51], and AntidoteDB [6], which claims to implement causal con-
sistency [7]. Our implementation reports violations of these criteria in all cases. The consistency
violations we found for AntidoteDB are novel and have been con�rmed by its developers. We
show that our algorithms are e�cient and scalable. In particular, we show that, although the
asymptotic complexity of our algorithms is exponential in general (w.r.t. the number of sessions),
the worst-case behavior is not exercised in practice.

The remainder of this chapter is organized as follows:

• Section 3.1 de�nes a new speci�cation framework for describing common transactional-
consistency criteria;

• Section 3.2 shows that checking RC, RA, and CC is polynomial time while checking PC
and SI is NP-complete;

• Section 3.3 and Section 3.4 show that PC, SI, and SER are polynomial-time checkable as-
suming that the communication graph of the input execution has �xed-size biconnected
components;

• Section 3.5 describes an empirical evaluation of our algorithms on executions generated by
production databases;

Section 3.6 overviews related work, and Section 3.7 concludes.

3.1 Consistency Criteria

3.1.1 Histories

We consider a transactional database storing a set of variables Var = {x, y, . . .}. Clients interact
with the database by issuing transactions formed of read and write operations. Assuming an
unspeci�ed set of values Val and a set of operation identi�ers OId, we let

Op = {readi(x, v),writei(x, v) : i ∈ OId, x ∈ Var, v ∈ Val}

be the set of operations reading a value v or writing a value v to a variable x. We omit operation
identi�ers when they are not important.

De�nition 3.1.1. A transaction log 〈t, O, po〉 is a transaction identifier t and a finite set of oper-
ationsO along with a strict total order po onO, called program order.
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x = 1;

...
x = 2;

...
read(x);

(a)

x = 1;

...
x = 2;

...
read(x);

(b)

x = 1;

...
ABORT;

...
read(x);

(c)

Figure 3.1: Examples of transactions used to justify our simplifying assumptions (each box represents a
di�erent transaction): (a) only the last written value is observable in other transactions, (b) reads
following writes to the same variable return the last written value in the same transaction, and
(c) values written in aborted transactions are not observable.

The program order po represents the order between instructions in the body of a transaction.
We assume that each transaction log is well-formed in the sense that if a read of a variable x is
preceded by a write to x in po, then it should return the value written by the last write to x before
the read (w.r.t. po). This property is implicit in the de�nition of every isolation level or consistency
model that we are aware of. For simplicity, we may use the term transaction instead of transaction
log and ignore transaction identi�er assuming all transaction is uniquely identi�ed. The set of all
transaction logs is denoted by Tlogs.

We use t, t1, t2, . . . to range over transactions. The set of read, resp., write, operations in a
transaction t is denoted by reads(t), resp., writes(t). The extension to sets of transactions is
de�ned as usual. Also, we say that a transaction t writes a variable x, denoted by twrites x, when
writei(x, v) ∈ writes(t) for some i and v. Similarly, a transaction t reads a variable x when
readi(x, v) ∈ reads(t) for some i and v.

To simplify the exposition, we assume that each transaction t contains at most one write oper-
ation to each variable2, and that a read of a variable x cannot be preceded by a write to x in the
same transaction3. If a transaction would contain multiple writes to the same variable, then only
the last one should be visible to other transactions (w.r.t. any consistency criterion considered in
practice). For instance, the read(x) in Figure 3.1a should not return 1 because this is not the last
value written to x by the other transaction. It can return the initial value or 2. Also, if a read would
be preceded by a write to the same variable in the same transaction, then it should return a value
written in the same transaction (i.e., the value written by the latest write to x in that transaction).
For instance, the read(x) in Figure 3.1b can only return 2 (assuming that there are no other writes
on x in the same transaction). These two properties can be veri�ed easily (in a syntactic manner)
on a given execution. Beyond these two properties, the various consistency criteria used in prac-
tice constrain only the last writes to each variable in each transaction and the reads that are not
preceded by writes to the same variable in the same transaction.

Consistency criteria are formalized on an abstract view of an execution called history. A his-
tory includes only successful or committed transactions. In the context of databases, it is always
assumed that the e�ect of aborted transactions should not be visible to other transactions, and
therefore, they can be ignored. For instance, the read(x) in Figure 3.1c should not return the value
1 written by the aborted transaction. The transactions are ordered according to a (partial) session

2That is, for every transaction t, and every write(x, v),write(y, v′) ∈ writes(t), we have that x 6= y.
3That is, for every transaction t = 〈O, po〉, if write(x, v) ∈ writes(t) and there exists read(x, v) ∈ reads(t),

then we have that 〈read(x, v),write(x, v)〉 ∈ po
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order so which represents ordering constraints imposed by the applications using the database.
Most often, so is a union of sequences, each sequence being called a session. We assume that the his-
tory includes a write-read relation that identi�es the transaction writing the value returned by each
read in the execution. As mentioned before, such a relation can be extracted easily from executions
where each value is written at most once. Since in practice, databases are data-independent [96],
i.e., their behavior does not depend on the concrete values read or written in the transactions, any
potential buggy behavior can be exposed in such executions.

De�nition 3.1.2. A history 〈T, so,wr〉 is a set of transactions T along with a strict partial order
so called session order, and a relation wr ⊆ T × reads(T ) called write-read relation, s.t.

• the inverse of wr is a total function, and if (t, read(x, v)) ∈ wr, then write(x, v) ∈ t, and

• so ∪ wr is acyclic.

To simplify the technical exposition, we assume that every history includes a distinguished
transaction writing the initial values of all variables. This transaction precedes all the other trans-
actions in so. We use h, h1, h2, . . . to range over histories.

We say that the read operation read(x, v) reads value v from variable x written by t when
(t, read(x, v)) ∈ wr. For a given variable x, wrx denotes the restriction of wr to reads of variable
x, i.e. , wrx = wr ∩ (T × {read(x, v) | v ∈ Val}). Moreover, we extend the relations wr and
wrx to pairs of transactions as follows: 〈t1, t2〉 ∈ wr, resp., 〈t1, t2〉 ∈ wrx, i� there exists a read
operation read(x, v) ∈ reads(t2) such that 〈t1, read(x, v)〉 ∈ wr, resp., 〈t1, read(x, v)〉 ∈
wrx. We say that the transaction t1 is read by the transaction t2 when 〈t1, t2〉 ∈ wr, and that it
is read when it is read by some transaction t2.

3.1.2 Axiomatic Framework

We describe an axiomatic framework to characterize the set of histories satisfying a certain con-
sistency criterion. The overarching principle is to say that a history satis�es a certain criterion if
there exists a strict total order on its transactions, called commit order and denoted by co, which
extends the write-read relation and the session order, and which satis�es certain properties. These
properties are expressed by a set of axioms that relate the commit order with the session-order and
the write-read relation in the history.

The axioms we use have a uniform shape: they de�ne mandatory co predecessors t2 of a transac-
tion t1 that is read in the history. For instance, the criterion called ReadCommitted (RC) [12]
requires that every value read in the history was written by a committed transaction, and also, that
the reads in the same transaction are “monotonic” in the sense that they do not return values that
are older, w.r.t. the commit order, than other values read in the past4. While the �rst condition
holds for any history (because of the surjectivity of wr), the second condition is expressed by the
axiom Read Committed in Figure 3.2a. This axiom states that for any transaction t1 writing a
variable x that is read in a transaction t, the set of transactions t2 writing x and read previously in
the same transaction must precede t1 in commit order. For instance, Figure 3.3a shows a history

4This monotonicity property corresponds to the fact that in the original formulation of Read Committed [12],
every write is guarded by the acquisition of a lock on the written variable, that is held until the end of the transaction.
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t1

t2

writes x

α

β

wrx

wr

po
co

∀x, ∀t1, t2, ∀α. t1 6= t2 ∧
〈t1, α〉 ∈ wrx ∧ t2 writes x∧
〈t2, α〉 ∈ wr ◦ po
⇒ 〈t2, t1〉 ∈ co

(a) Read Committed

t1 t3

t2

writes x

wrx

wr ∪ so

co

∀x, ∀t1, t2, ∀t3. t1 6= t2 ∧
〈t1, t3〉 ∈ wrx ∧ t2 writes x∧
〈t2, t3〉 ∈ wr ∪ so
⇒ 〈t2, t1〉 ∈ co

(b) Read Atomic

t1 t3

t2

writes x

wrx

(wr ∪ so)+

co

∀x, ∀t1, t2, ∀t3. t1 6= t2 ∧
〈t1, t3〉 ∈ wrx ∧ t2 writes x∧
〈t2, t3〉 ∈ (wr ∪ so)+

⇒ 〈t2, t1〉 ∈ co

(c) Causal

t1 t3

t2

writes x

t4

wrx

co∗

(wr ∪ so)co

∀x, ∀t1, t2, ∀t3. t1 6= t2 ∧
〈t1, t3〉 ∈ wrx ∧ t2 writes x∧
〈t2, t3〉 ∈ co∗ ◦ (wr ∪ so)
⇒ 〈t2, t1〉 ∈ co

(d) Prefix

t1 t3

writes y

t2

writes x

t4

writes y

wrx

co∗

co
co

∀x, ∀t1, t2, ∀t3, t4, ∀y. t1 6= t2 ∧
〈t1, t3〉 ∈ wrx ∧ t2 writes x∧

t3 writes y ∧ t4 writes y ∧
〈t2, t4〉 ∈ co∗∧〈t4, t3〉 ∈

co
⇒ 〈t2, t1〉 ∈ co

(e) Conflict

t1 t3

t2

writes x

wrx

co

co

∀x, ∀t1, t2, ∀t3. t1 6= t2 ∧
〈t1, t3〉 ∈ wrx ∧ t2 writes x∧
〈t2, t3〉 ∈ co
⇒ 〈t2, t1〉 ∈ co

(f) Serializability

Figure 3.2: De�nitions of consistency axioms. The re�exive and transitive, resp., transitive, closure of a
relation rel is denoted by rel∗, resp., rel+. Also, ◦ denotes the composition of two relations,
i.e., rel1 ◦ rel2 = {〈a, b〉|∃c.〈a, c〉 ∈ rel1 ∧ 〈c, b〉 ∈ rel2}.
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x = 1;

x = 2;

y = 2;

read(y); // 2

read(x); // 1

co po

(a) Read Committed violation.

x = 1;

x = 2;

read(x); // 1

read(x); // 2

co po

(b) Repeatable Read violation.

x = 1;

y = 1;

read(x); // 1

y = 2;

read(x); // 1

read(y); // 1

so

po

(c) Read My Writes violation.

x = 1;

y = 1;

x = 2;

y = 2; read(y); // 2

read(x); // 1

po

(d) Repeatable Read violation.

x = 1;
read(x); // 1

x = 2;

read(x); // 1

read(y); // 1

read(x); // 2

y = 1;

(e) Causal violation.

x = 1;

y = 1;

read(x); // 1

x = 2;

read(y); // 1

y = 2;

read(x); // 2

read(y); // 1

read(y); // 2

read(x); // 1

(f) Prefix violation.

x = 1;

read(x); // 1

x = 2;

read(x); // 1

x = 3;

(g) Conflict violation.

x = 1;

y = 1;

read(x); // 1

read(y); // 1

x = 2;

read(x); // 1

read(y); // 1

y = 2;

(h) Serializability violation.

Figure 3.3: Examples of histories used to explain the axioms in Figure 3.2. For readability, the wr relation
is de�ned by the values written in comments with each read.
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and a (partial) commit order that does not satisfy this axiom because read(x) returns the value
written in a transaction “older” than the transaction read in the previous read(y). An example
of a history and commit order satisfying this axiom is given in Figure 3.3b.

More precisely, the axioms are �rst-order formulas5 of the following form:

∀x, ∀t1, t2, ∀α. t1 6= t2 ∧ 〈t1, α〉 ∈ wrx ∧ t2 writes x ∧ φ(t2, α)⇒ 〈t2, t1〉 ∈ co (3.1)

where φ is a property relating t2 and α (i.e., the read or the transaction reading from t1) that
varies from one axiom to another. Intuitively, this axiom schema states the following: in order for
α to read speci�cally t1’s write onx, it must be the case that every t2 that also writesx and satis�es
φ(t2, α) was committed before t1. Note that in all cases we consider,φ(t2, α) already ensures that
t2 is committed before the readα, so this axiom schema ensures that t2 is furthermore committed
before t1’s write.

The axioms used throughout the chapter are given in Figure 3.2. The propertyφ relates t2 and
α using the write-read relation and the session order in the history, and the commit order.

In the following, we explain the rest of the consistency criteria we consider and the axioms
de�ning them. Read Atomic (RA) [31] is a strengthening of Read Committed de�ned by
the axiom Read Atomic, which states that for any transaction t1 writing a variable x that is read
in a transaction t3, the set of wr or so predecessors of t3 writing x must precede t1 in commit
order. The case of wr predecessors corresponds to the Repeatable Read criterion in [12], which
requires that successive reads of the same variable in the same transaction return the same value,
Figure 3.3b showing a violation, and also that every read of a variable x in a transaction t returns
the value written by the maximal transaction t′ (w.r.t. the commit order) that is read by t, Fig-
ure 3.3d showing a violation (for any commit order between the transactions on the left, either
read(x) or read(y) will return a value not written by the maximal transaction). The case of so
predecessors corresponds to the “read-my-writes” guarantee [90] concerning sessions, which states
that a transaction tmust observe previous writes in the same session. For instance, read(y) return-
ing 1 in Figure 3.3c shows that the last transaction on the right does not satisfy this guarantee: the
transaction writing 1 to y was already visible to that session before it wrote 2 to y, and therefore the
value 2 should have been read. Read Atomic requires that the so predecessor of the transaction
reading y be ordered in co before the transaction writing 1 to y, which makes the union co ∪ wr
cyclic.

The following lemma shows that for histories satisfying Read Atomic, the inverse of wrx ex-
tended to transactions is a total function.

Lemma 3.1.1. Let h = 〈T, so,wr〉 be a history. If 〈h, co〉 satisfies Read Atomic, then for every
transaction t and two reads readi1(x, v1), readi2(x, v2) ∈ reads(t), wr−1(readi1(x, v1)) =
wr−1(readi2(x, v2)) and v1 = v2.

Proof. Let 〈t1, readi1(x, v1)〉, 〈t2, readi2(x, v2)〉 ∈ wrx. Then t1, t2 write to x. Let us assume
by contradiction, that t1 6= t2. By Read Atomic, 〈t2, t1〉 ∈ co because 〈t1, readi1(x, v1)〉 ∈
wrx and t2 writes to x. Similarly, we can also show that 〈t1, t2〉 ∈ co. This contradicts the

5These formulas are interpreted on tuples 〈h, co〉 of a history h and a commit order co on the transactions in h as
usual.
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3 Checking Transactional Consistency

Table 3.1: Consistency model de�nitions
Consistency model Axioms
Read Committed (RC) Read Committed

Read Atomic (RA) Read Atomic

Causal consistency (CC) Causal

Prefix consistency (PC) Prefix

Snapshot isolation (SI) Prefix ∧ Conflict

Serializability (SER) Serializability

fact that co is a strict total order. Therefore, t1 = t2. We also have that v1 = v2 because each
transaction contains a single write to x.

Causal Consistency (CC) [68] is de�ned by the axiom Causal, which states that for any
transaction t1 writing a variablex that is read in a transaction t3, the set of (wr∪so)+ predecessors
of t3 writing x must precede t1 in commit order ((wr ∪ so)+ is usually called the causal order).
A violation of this axiom can be found in Figure 3.3e: the transaction t2 writing 2 to x is a (wr ∪
so)+ predecessor of the transaction t3 reading 1 from x because the transaction t4, writing 1 to
y, reads x from t2 and t3 reads y from t4. This implies that t2 should precede in commit order
the transaction t1 writing 1 to x, which again, is inconsistent with the write-read relation (t2 reads
from t1).
Prefix consistency (PC) [30] is a strengthening of CC, which requires that every transac-

tion observes a pre�x of a commit order between all the transactions. With the intuition that the
observed transactions are wr ∪ so predecessors, the axiom Prefix de�ning PC, states that for any
transaction t1 writing a variable x that is read in a transaction t3, the set of co∗ predecessors of
transactions observed by t3 writingxmust precede t1 in commit order (we use co∗ to say that even
the transactions observed by t3 must precede t1). This ensures the pre�x property stated above.
An example of a PC violation can be found in Figure 3.3f: the two transactions on the bottom
read from the three transactions on the top, but any serialization of those three transactions will
imply that one of the combinations x=1, y=2 or x=2, y=1 cannot be produced at the end of a pre�x
in this serialization.
Snapshot Isolation (SI) [12] is a strengthening of PC that disallows two transactions to

observe the same pre�x of a commit order if they conflict, i.e., write to a common variable. It is
de�ned by the conjunction of Prefix and another axiom called Conflict, which requires that for
any transaction t1 writing a variable x that is read in a transaction t3, the set of co∗ predecessors
writing x of transactions con�icting with t3 and before t3 in commit order, must precede t1 in
commit order. Figure 3.3g shows a Conflict violation.

Finally, Serializability (SER) [80] is de�ned by the axiom with the same name, which re-
quires that for any transaction t1 writing to a variablex that is read in a transaction t3, the set of co
predecessors of t3 writing xmust precede t1 in commit order. This ensures that each transaction
observes the e�ects of all the co predecessors. Figure 3.3h shows a Serializability violation.

The next lemma states the relationship between these axioms.
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3.1 Consistency Criteria

Lemma 3.1.2. The following entailments hold:

Causal⇒ Read Atomic⇒ Read Committed

Prefix⇒ Causal

Serializability⇒ Prefix ∧ Conflict

Proof. We will show the contrapositive of each implication:

• If 〈h, co〉 does not satisfy Read Committed, then

∃x, ∃t1, t2, ∃α, β. 〈t1, α〉 ∈ wrx ∧ t2 writes x ∧ 〈t2, β〉 ∈ wr ∧ 〈β, α〉 ∈ po ∧ 〈t1, t2〉 ∈ co.

Let t3 the transaction containing α and β. We have that 〈t2, t3〉 ∈ wr. But then we have
t1, t2, t3 such that 〈t1, t3〉 ∈ wrx and 〈t2, t3〉 ∈ wr and t2 writes x. So by Read Atomic,
〈t2, t1〉 ∈ co. This contradicts the fact that co is a strict total order. Therefore, 〈h, co〉
does not satisfy Read Atomic.

• If 〈h, co〉 does not satisfy Read Atomic, then

∃x,∃t1, t2, t3. 〈t1, t3〉 ∈ wrx ∧ t2 writes x ∧ 〈t2, t3〉 ∈ wr ∪ so ∧ 〈t1, t2〉 ∈ co.

Then 〈t2, t3〉 ∈ (wr ∪ so)+. Then, by Causal, we have 〈t2, t1〉 ∈ co, which contradicts
the fact that co is a strict total order. Therefore, 〈h, co〉 does not satisfy Causal.

• If 〈h, co〉 does not satisfy Causal, then

∃x,∃t1, t2, t3. 〈t1, t3〉 ∈ wrx ∧ t2 writes x ∧ 〈t2, t3〉 ∈ (wr ∪ so)+ ∧ 〈t1, t2〉 ∈ co.

But, (wr ∪ so)+ = (wr ∪ so)∗ ◦ (wr ∪ so) ⊆ co∗ ◦ (wr ∪ so). Therefore, 〈t2, t3〉 ∈
co∗ ◦ (wr ∪ so). Then, by Prefix, we have 〈t2, t1〉 ∈ co, which contradicts the fact that
co is a strict total order. Therefore, 〈h, co〉 does not satisfy Prefix.

• If 〈h, co〉 does not satisfy Prefix or Conflict, then

∃x,∃t1, t2, t3, t4. 〈t1, t3〉 ∈ wrx ∧ t2 writes x ∧ 〈t2, t4〉 ∈ co∗ ∧ 〈t1, t2〉 ∈ co

and
– 〈t4, t3〉 ∈ co ∧ t3 writes y ∧ t3 writes y if it violates Conflict.
– 〈t4, t3〉 ∈ (wr ∪ so) if it violates Prefix.

In both cases, we have that 〈t4, t3〉 ∈ co. Because co is transitive, 〈t2, t4〉 ∈ co∗ and
〈t4, t3〉 ∈ co imply that 〈t2, t3〉 ∈ co. Then by Serializability, we have 〈t2, t1〉 ∈ co,
which contradicts the fact that co is a strict total order. Therefore, 〈h, co〉 does not satisfy
Serializability.
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(a) Violation of Read Atomic
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read(x); // 1
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(b) Valid w.r.t. Read Atomic
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read(x); // 1

read(y); // 1

so wrx
co

wrx ◦ wry

wrx wry

(c) Violation of Causal Consistency

Figure 3.4: Applying the RA and CC checking algorithms.

De�nition 3.1.3. Given a set of axioms X defining a criterion C like in Table 3.1, a history h =
〈T, so,wr〉 satis�es C i� there exists a strict total order co such that wr ∪ so ⊆ co and 〈h, co〉
satisfiesX .

De�nition 3.1.3 and Lemma 3.1.2 imply that each consistency criterion in Table 3.1 is stronger
than its predecessors (reading them from top to bottom), e.g., CC is stronger than RA and RC.
This relation is known to be strict [31], e.g., RA is not stronger than CC.

3.2 Checking Consistency Criteria

This section establishes the complexity of checking the di�erent consistency criteria in Table 3.1
for a given history. More precisely, we show thatReadCommitted,ReadAtomic, andCausal
Consistency can be checked in polynomial time while the problem of checking the rest of the
criteria is NP-complete.

Intuitively, the polynomial time results are based on the fact that the axioms de�ning those
consistency criteria do not contain the commit order (co) on the left-hand side of the entailment.
Therefore, proving the existence of a commit order satisfying those axioms can be done using a
saturation procedure that builds a “partial” commit order based on instantiating the axioms on
the write-read relation and the session order in the given history. Since the commit order must
be an extension of the write-read relation and the session order, it contains those two relations
from the beginning. This saturation procedure stops when the order constraints derived this way
become cyclic. For instance, let us consider applying such a procedure corresponding to RA on
the histories in Figure 3.4a and Figure 3.4b. Applying the axiom in Figure 3.2b on the �rst history,
since the transaction on the right reads 2 from y, we get that its wrx predecessor (i.e., the �rst
transaction on the left) must precede the transaction writing 2 toy in commit order (the red edge).
This holds because the wrx predecessor writes on y. Similarly, since the same transaction reads 1
from x, we get that its wry predecessor must precede the transaction writing 1 to x in commit
order (the blue edge). This already implies a cyclic commit order, and therefore, this history does
not satisfy RA. On the other hand, for the history in Figure 3.4b, all the axiom instantiations are
vacuous, i.e., the left part of the entailment is false, and therefore, it satis�es RA. Checking CC
on the history in Figure 3.4c requires a single saturation step: since the transaction on the bottom
right reads 1 from x, its wrx ◦ wry predecessor that writes on x (the transaction on the bottom
left) must precede in commit order the transaction writing 1 tox. Since this is already inconsistent
with the session order, we get that this history violates CC.
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3.2 Checking Consistency Criteria

Input: A history h = 〈T, so,wr〉
Output: true i� h satis�es Causal consistency

1 if so ∪ wr is cyclic then
2 return false;
3 co← so ∪ wr ;
4 foreach x ∈ vars(h) do
5 foreach t1 6= t2 ∈ T s.t. t1 and t2 write x do
6 if ∃t3. 〈t1, t3〉 ∈ wrx ∧ 〈t2, t3〉 ∈ (so ∪ wr)+ then
7 co← co ∪ {〈t2, t1〉};
8 if co is cyclic then
9 return false;

10 else
11 return true;

Algorithm 5: Checking Causal consistency.

Algorithm 5 lists our procedure for checking CC. As explained above, co is initially set to
so ∪ wr, and then, it is saturated with other ordering constraints implied by non-vacuous in-
stantiations of the axiom Causal (where the left-hand side of the implication evaluates to true).
The algorithms concerning RC and RA are de�ned in a similar way by essentially changing the
test at line 6 so that it corresponds to the left-hand side of the implication in the corresponding
axiom. Algorithm 5 can be rewritten as a Datalog program containing straightforward Datalog
rules for computing transitive closures and relation composition, and a rule of the form6

〈t2, t1〉 ∈ co :- t1 6= t2, 〈t1, t3〉 ∈ wrx, 〈t2, t3〉 ∈ (so ∪ wr)+

to represent the Causal axiom. The following is a consequence of the fact that these algorithms
run in polynomial time (or equivalently, the corresponding Datalog programs can be evaluated in
polynomial time over a database that contains the wr and so relations in a given history).

Theorem 3.2.1. For any criterion C ∈ {Read Committed, Read Atomic, Causal con-
sistency }, the problem of checking whether a given history satisfiesC is polynomial time.

On the other hand, checking PC, SI, and SER is NP-complete in general. We show this using a
reduction from boolean satis�ability (SAT) that covers uniformly all the three cases. In the case of
SER, it provides a new proof of the NP-completeness result by [80], which uses a reduction from
the so-called non-circular SAT and which cannot be extended to PC and SI.

Theorem 3.2.2. For any criterion C ∈ {Prefix Consistency, Snapshot Isolation, Seri-
alizability } the problem of checking whether a given history satisfiesC is NP-complete.

Proof. Given a history, any of these three criteria can be checked by guessing a total commit order
on its transactions and verifying whether it satis�es the corresponding axioms. This shows that
the problem is in NP.

6We write Datalog rules using a standard notation head :- body where head is a relational atom (written as 〈a, b〉 ∈
R where a, b are elements andR a binary relation) and body is a list of relational atoms.

37



3 Checking Transactional Consistency

ak

bkwij

yij

writes vij

zij

zi,j−1

yi,j+1

cocococo

wrvij

so

so

so

so

(a) λij = xk

bk

akwij

yij

writes vij

zij

zi,j−1

yi,j+1

co cococo

wrvij

so

so

so

so

(b) λij = ¬xk

Figure 3.5: Sub-histories included in hϕ for each literal λij and variable xk.

To show NP-hardness, we de�ne a reduction from boolean satis�ability. Therefore, let ϕ =
D1 ∧ . . . ∧ Dm be a CNF formula over the boolean variables x1, . . . , xn where each Di is a
disjunctive clause withmi literals. Let λij denote the j-th literal ofDi.

We construct a history hϕ such that ϕ is satis�able if and only if hϕ satis�es PC, SI, or SER.
Since SER⇒ SI⇒ PC, we show that (1) if hϕ satis�es PC, then ϕ is satis�able, and (2) if ϕ is
satis�able, then hϕ satis�es SER.

Construction of hϕ The main idea of the construction is to represent truth values of each
of the variables and literals in ϕ with the polarity of the commit order between corresponding
transaction pairs. For each variable xk, hϕ contains a pair of transactions ak and bk, and for each
literal λij , hϕ contains a set of transactions wij , yij and zij7. We want to have that xk is false if
and only if 〈ak, bk〉 ∈ co, andλij is false if and only if 〈yij , zij〉 ∈ co (the transactionwij is used
to "synchronize" the truth value of the literals with that of the variables, which is explained later).

The historyhϕ should ensure that the co ordering constraints corresponding to an assignment
that falsi�es the formula (i.e. one of its clauses) form a cycle. To achieve that, we add all pairs〈
zij , yi,(j+1)%mi

〉
in the session order so. An unsatis�ed clauseDi, i.e. every λij is false, leads to

a cycle of the form yi1
co−→ zi1

so−→ yi2
co−→ zi2 · · · zimi

so−→ yi1.
The most complicated part of the construction is to ensure some consistency between the truth

value of the literals and the truth value of the variables, e.g., λij = xk is true i� xk is true, for at
least one literalλij interpreted as true in every clauseDi (if such a literal exists). Figure 3.5a shows
the sub-history associated to a positive literal λij = xk while Figure 3.5b shows the case of a
negative literalλij = ¬xk. For a positive literalλij = xk (Figure 3.5a), (1) we enrich session order
with the pairs 〈yij , ak〉 and 〈bk, wij〉, (2) we include writes to a variable vij in the transactions
yij and zij , and (3) we make wij read from zij , i.e. 〈zij , wij〉 ∈ wrvij . The case of a negative
literal is similar, switching the roles of ak and bk.

PC for hϕ implies satisfiability of ϕ If hϕ satis�es PC, then there exists a total commit
order co between the transactions described above, which together with hϕ satis�es Prefix. We
show that the assignment of the variables xk explained above (de�ned by the co order between
ak and bk, for each k) satis�es the formula ϕ. For each clauseDi, the so constraints between the

7We assume that the transactionsak and bk associated to a variablexk are distinct and di�erent from the transactions
associated to another variablexk′ 6= xk or to a literalλij . Similarly, for the transactionswij , yij and zij associated
to a literal λij .
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transactions yij , zij with 1 ≤ j ≤ mi imply that there exist some zij that is committed before its
corresponding yij . These two transactions are included in the sub-history corresponding to the
literal λij (Figure 3.5a or Figure 3.5b depending on the polarity of the literal).

The de�nition of this sub-history ensures that the interpretation to true of the literalλij (given
by the order in co between zij and yij) is consistent with the assignment of the variable it contains
(de�ned by the co order between ak, bk). More precisely, it ensures that if the co goes upwards
on the left-hand side (〈zij , yij〉 ∈ co) like in this case, then it must also go upwards on the right-
hand side (〈bk, ak〉 ∈ co in the case of a positive literal, and 〈ak, bk〉 ∈ co in the case of a negative
literal) to satisfy Prefix. For instance, if λij = xk is a positive literal and we assume by contradic-
tion that 〈ak, bk〉 ∈ co, then 〈yij , wij〉 ∈ so ◦ co ◦ so. Therefore, for every commit order co
such that 〈hϕ, co〉 satis�es Prefix, 〈ak, bk〉 ∈ co implies 〈yij , zij〉 ∈ co, which contradicts the
hypothesis. Indeed, if 〈ak, bk〉 ∈ co, instantiating the Prefix axiom where yij plays the role of t2,
zij plays the role of t1, andwij plays the role of t3, we obtain that 〈yij , zij〉 ∈ co.

Therefore, the assignment of the variables xk leads to at least one literal interpreted to true in
each clauseDi, and the formula ϕ is satis�able.

Satisfiability of ϕ implies SER for hϕ Let γ be a satisfying assignment for ϕ. Also, let
co′ be a binary relation that includes so and wr such that if γ(xk) = false , then 〈ak, bk〉 ∈ co′,
〈yij , zij〉 ∈ co′ for each λij = xk, and 〈zij , yij〉 ∈ co′ for each λij = ¬xk, and if γ(xk) =
true , then 〈bk, ak〉 ∈ co′, 〈zij , yij〉 ∈ co′ for each λij = xk, and 〈yij , zij〉 ∈ co′ for each
λij = ¬xk. Looking at the sub-histories corresponding to literalsλij (Figure 3.5a or Figure 3.5b),
co′ goes in the same direction (upwards or downwards) on both sides.

Note that co′ is acyclic: no cycle can contain wij because wij has no “outgoing” dependency
(i.e. co′ contains no pair with wij as a �rst component), there is no cycle including some pair of
transactions ak, bk and some pair yij , zij because there is no way to reach yij or zij from ak or
bk, there is no cycle including only transactions ak and bk because ak1 and bk1 are not related
to ak2 and bk2 , for k1 6= k2, there is no cycle including transactions yi1,j1 , zi1,j1 and yi2,j2 ,
zi2,j2 for i1 6= i2 since these are disconnected as well, and �nally, there is no cycle including
only transactions yij and zij , for a �xed i, because ϕ is satis�able. It can be proved easily that the
acyclic relation co′ can be extended to a total commit order co which together with hϕ satis�es
the Serializability axiom. Therefore, hϕ satis�es SER.

3.3 Checking Consistency of Bounded-WidthHistories

In this section, we show that checking pre�x consistency, snapshot isolation, and serializability
becomes polynomial time under the assumption that the width of the given history, i.e., the max-
imum number of mutually-unordered transactions w.r.t. the session order, is bounded by a �xed
constant. If we consider the standard case where the session order is a union of transaction se-
quences (modulo the �ctitious transaction writing the initial values), i.e., a set of sessions, then the
width of the history is the number of sessions. We start by presenting an algorithm for checking se-
rializability that is polynomial time when the width is bounded by a �xed constant. In general, the
asymptotic complexity of this algorithm is exponential in the width of the history, but this worst-
case behavior is not exercised in practice as shown in Section 3.5. Then, we prove that checking
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Figure 3.6: Applying the serializability checking algorithm checkSER (Algorithm 6) on the serializable his-

tory on the left. The right part pictures a search for valid extensions of serializable pre�xes, rep-
resented by their boundaries. The red arrow means that the search is blocked (the pre�x at the
target is not a valid extension), while blue arrows mean that the search continues.

pre�x consistency and snapshot isolation can be reduced in polynomial time to the problem of
checking serializability.

3.3.1 Checking Serializability

We present an algorithm for checking serializability of a given history which constructs a valid
commit order (satisfying Serialization), if any, by “linearizing” transactions one by one in an order
consistent with the session order. At any time, the set of already linearized transactions is uniquely
determined by an antichain of the session order (i.e., a set of mutually-unordered transactions
w.r.t. so), and the next transaction to linearize is chosen among the immediate so successors of the
transactions in this antichain. The crux of the algorithm is that the next transaction to linearize
can be chosen such that it does not produce violations of Serialization in a way that does not
depend on the order between the already linearized transactions. Therefore, the algorithm can be
seen as a search in the space of so antichains. If the width of the history is bounded (by a �xed
constant), then the number of possible so antichains is polynomial in the size of the history, which
implies that the search can be done in polynomial time.

A prefix of a history h = 〈T, so,wr〉 is a set of transactions T ′ ⊆ T such that all the so
predecessors of transactions inT ′ are also inT ′, i.e.,∀t ∈ T. so−1(t) ∈ T . A pre�xT ′ is uniquely
determined by the set of transactions in T ′ that are maximal w.r.t. so. This set of transactions
forms an antichain of so, i.e., any two elements in this set are incomparable w.r.t. so. Given an
antichain {t1, . . . , tn} of so, we say that {t1, . . . , tn} is the boundary of the pre�x T ′ = {t :
∃i. 〈t, ti〉 ∈ so ∨ t = ti}. For instance, given the history in Figure 3.6a, the set of transactions
{t0, t1, t2} is a pre�x with boundary {t1, t2} (the latter is an antichain of the session order).

A pre�x T ′ of a history h is called serializable i� there exists a partial commit order co on the
transactions in h such that the following hold:

• co does not contradict the session order and the write-read relation in h, i.e., wr ∪ so∪ co
is acyclic,

• co is a total order on transactions in T ′,
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• co orders transactions in T ′ before transactions in T \ T ′, i.e., 〈t1, t2〉 ∈ co for every
t1 ∈ T ′ and t2 ∈ T \ T ′,

• co does not order any two transactions t1, t2 6∈ T ′

• the historyh along with the commit order co satis�es the axiom de�ning serializability, i.e.,
〈h, co〉 |= Serialization.

For the history in Figure 3.6a, the pre�x {t0, t1, t2} is serializable since there exists a partial
commit order co that orders t0, t1, t2 in this order, and both t1 and t2 before t3 and t4. The
axiom Serialization is satis�ed trivially, since the pre�x contains a single transaction writing x
and all the transactions outside of the pre�x do not read x.

A pre�x T ′ ] {t} of h is called a valid extension8 of a serializable pre�x T ′ of h, denoted by
T ′ B T ′ ] {t}if:

• t does not read from a transaction outside of T ′, i.e., for every t′ ∈ T \ T ′, 〈t′, t〉 6∈ wr,
and

• for every variable xwritten by t, there exists no transaction t2 6= t outside of T ′ that reads
a value of xwritten by a transaction t1 inT ′, i.e., for every xwritten by t and every t1 ∈ T ′
and t2 ∈ T \ (T ′ ] {t}), 〈t1, t2〉 6∈ wr.

For the history in Figure 3.6a, we have {t0, t1} B {t0, t1}]{t2} because t2 reads from t0 and
it does not write any variable. On the other hand {t0, t1} 6B {t0, t1} ] {t3} because t3 writes x
and the transaction t2, outside of this pre�x, reads from the transaction t0 included in the pre�x.

LetB∗ denote the re�exive and transitive closure ofB.
The following lemma is essential in proving that iterative valid extensions of the initial empty

pre�x can be used to show that a given history is serializable.

Lemma 3.3.1. For a serializable prefix T ′ of a history h, a prefix T ′ ] {t} is serializable if it is a
valid extension of T ′.

Proof. Let co′ be the partial commit order forT ′ which satis�es the serializable pre�x conditions.
We extend co′ to a partial order co = co′ ∪ {〈t, t′〉|t′ 6∈ T ′ ] {t′}}. We show that 〈h, co〉 |=
Serialization. The other conditions for T ′ ] {t} being a serializable pre�x are satis�ed trivially
by co.

Assume by contradiction that 〈h, co〉 does not satisfy the axiom Serialization. Then, there
exists t1, t2, t3, x ∈ vars(h) s.t. 〈t1, t3〉 ∈ wrx and t2 writes on x and 〈t1, t2〉, 〈t2, t3〉 ∈ co.
Since 〈h, co′〉 satis�es this axiom, at least one of these two co ordering constraints are of the form
〈t, t′〉where t′ 6∈ T ′ ] {t}:

• the case t1 = t and t2 6∈ T ′ ] {t} is not possible because co′ contains no pair of the form
〈t′, _〉 ∈ co′ with t′ 6∈ T ′ (recall that 〈t2, t3〉 should be also included in co).

• If t2 = t then, 〈t1, t2〉 ∈ co′ and 〈t2, t3〉 for some t3 6∈ T ′ ] {t}. But, by the de�nition
of valid extension, for all variables xwritten by t, there exists no transaction t3 6∈ T ′ ]{t}
such that it reads x from t1 ∈ T ′. Therefore, this is also a contradiction. �
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3 Checking Transactional Consistency

Input: A history h = (T, so,wr), a serializable pre�x T ′ of h
Output: true i� T ′ B∗ h

1 if T ′ = T then
2 return true;
3 foreach t 6∈ T ′ s.t. ∀t′ 6∈ T ′. 〈t′, t〉 6∈ wr ∪ so do
4 if T ′ 6B T ′ ] {t} then
5 continue;
6 if T ′ ] {t} 6∈ seen ∧ checkSER(h, T ′ ] {t}) then
7 return true;
8 seen ← seen ∪ {(T ′ ] {t})};
9 return false;
Algorithm 6: The algorithm checkSER for checking serializabilty. seen is a global vari-
able storing a set of pre�xes of h (which are not serializable). It is initialized as the empty
set.

Algorithm 6 lists our algorithm for checking serializability. It is de�ned as a recursive procedure
that searches for a sequence of valid extensions of a given pre�x (initially, this pre�x is empty) until
covering the whole history. Figure 3.6b pictures this search on the history in Figure 3.6a. The right
branch (containing blue edges) contains only valid extensions and it reaches a pre�x that includes
all the transactions in the history.

Theorem 3.3.1. A history h is serializable i� checkSER(h, ∅) returns true.

Proof. The “if” direction is a direct consequence of Lemma 3.3.1. For the reverse, assume that
h = 〈T, so,wr〉 is serializable with a (total) commit order co. Let coi be the set of transactions
in the pre�x of co of length i. Since co is consistent with so, we have that coi is a pre�x of h, for
any i. We show by induction that coi+1 is a valid extension of coi. The base case is trivial. For the
induction step, let t be the last transaction in the pre�x of co of length i+ 1. Then,

• t cannot read from a transaction outside of coi because co is consistent with the write-read
relation wr,

• also, for every variable x written by t, there exists no transaction t2 6= t outside of coi
that reads a value of x written by a transaction t1 ∈ coi. Otherwise, 〈t1, t2〉 ∈ wrx,
〈t, t2〉 ∈ co, and 〈t1, t〉 ∈ co which implies that 〈h, co〉 does not satisfy Serializability.

This implies that checkSER(h, ∅) returns true.

Algorithm 6 enumerates pre�xes of the given history h, each pre�x being uniquely determined
by an antichain of h containing the so-maximal transactions in that pre�x. By de�nition, the size
of each antichain of a history h is smaller than the width of h. Therefore, the number of possible
antichains (pre�xes) of a history h is O(size(h)width(h)) where size(h), resp., width(h), is the
number of transactions, resp., the width, of h. Since the valid extension property can be checked

8We assume that t 6∈ T ′ which is implied by the use of the disjoint union].
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3.3 Checking Consistency of Bounded-Width Histories

in quadratic time, the asymptotic time complexity of the algorithm de�ned by checkSER is upper
bounded byO(size(h)width(h)·size(h)3). The following corollary is a direct consequence of these
observations.

Corollary 3.3.1. For an arbitrary but fixed constant k ∈ N, the problem of checking serializability
for histories of width at most k is polynomial time.

3.3.2 Reducing Prefix Consistency to Serializability

We describe a polynomial time reduction of checking pre�x consistency of bounded-width his-
tories to the analogous problem for serializability. Intuitively, as opposed to serializability, pre�x
consistency allows that two transactions read the same snapshot of the database and commit to-
gether even if they write on the same variable. Based on this observation, given a history h for
which we want to check pre�x consistency, we de�ne a new history hR|W where each transac-
tion t is split into a transaction performing all the reads in t and another transaction performing
all the writes in t (the history hR|W retains all the session order and write-read dependencies of
h). We show that if the set of read and write transactions obtained this way can be shown to
be serializable, then the original history satis�es pre�x consistency, and vice-versa. For instance,
Figure 3.7 shows this transformation on the two histories in Figure 3.7a and Figure 3.7c, which
represent typical anomalies known as “long fork” and “lost update”, respectively. The former is
not admitted by PC while the latter is admitted. It can be easily seen that the transformed history
corresponding to the “long fork” anomaly is not serializable while the one corresponding to “lost
update” is serializable. We show that this transformation leads to a history of the same width,
which by Corollary 3.3.1, implies that checking pre�x consistency of bounded-width histories is
polynomial time.

Thus, given a historyh = 〈T,wr, so〉, we de�ne the historyhR|W = 〈T ′,wr′, so′〉 as follows:

• T ′ contains a transactionRt, called a read transaction, and a transactionWt, called a write
transaction, for each transaction t in the original history, i.e.,T ′ = {Rt|t ∈ T}∪{Wt|t ∈
T}

• the write transaction Wt writes exactly the same set of variables as t, i.e., for each variable
x,Wt writes to x i� twrites to x.

• the read transaction Rt reads exactly the same values and the same variables as t, i.e., for
each variable x, wrx

′ = {〈Wt1 , Rt2〉|〈t1, t2〉 ∈ wrx}

• the session order between the read and the write transactions corresponds to that of the
original transactions and read transactions precede their write counterparts, i.e.,

so′ = {〈Rt,Wt〉|t ∈ T} ∪ {〈Rt1 , Rt2〉, 〈Rt1 ,Wt2〉, 〈Wt1 , Rt2〉, 〈Wt1 ,Wt2〉|〈t1, t2〉 ∈ so}

The following lemma is a straightforward consequence of the de�nitions.

Lemma 3.3.2. The histories h and hR|W have the same width.
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read(x); // 0

x = 1;

read(y); // 0

y = 1;

read(x); // 1

read(y); // 0

read(x); // 0

read(y); // 1
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(b) Long fork (transformed)
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x = 2;

(c) Lost update

read(x); // 0

x = 1;

read(x); // 0

x = 2;

so so

(d) Lost update (transformed)
Figure 3.7: Reducing PC to SER. Initially, the value of every variable is 0.
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(b) 〈Wt2 ,Wt1〉 ∈ co′1

Figure 3.8: Cycles with non-consecutive write transactions.

Next, we show that hR|W is serializable if h is pre�x consistent. Formally, we show that

∀co. ∃co′. 〈h, co〉 |= Prefix⇒
〈
hR|W , co′

〉
|= Serializability

Thus, let co be a commit (total) order on transactions of h which together with h satis�es the
pre�x consistency axiom. We de�ne two partial commit orders co′1 and co′2, co′2 a strengthening
of co′1, which we prove that they are acyclic and that any linearization co′ of co′2 is a valid witness
for hR|W satisfying serializability.

Thus, let co′1 be a partial commit order on transactions of hR|W de�ned as follows:

co′1 = {〈Rt,Wt〉|t ∈ T} ∪ {〈Wt1 ,Wt2〉|〈t1, t2〉 ∈ co} ∪ {〈Wt1 , Rt2〉|〈t1, t2〉 ∈ wr ∪ so}

We show that if co′1 were to be cyclic, then it contains a minimal cycle with one read transaction,
and at least one but at most two write transactions. Then, we show that such cycles cannot exist.

Lemma 3.3.3. The relation co′1 is acyclic.

Proof. We �rst show that if co′1 were to be cyclic, then it contains a minimal cycle with one
read transaction, and at least one but at most two write transactions. Then, we show that such
cycles cannot exist. Therefore, let us assume that co′1 is cyclic. Then,

• Since 〈Wt1 ,Wt2〉 ∈ co′1 implies 〈t1, t2〉 ∈ co, for every t1 and t2, a cycle in co′1 cannot
contain only write transactions. Otherwise, it will imply a cycle in the original commit
order co. Therefore, a cycle in co′1 must contain at least one read transaction.
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3.3 Checking Consistency of Bounded-Width Histories

• Assume that a cycle in co′1 contains two write transactions Wt1 and Wt2 which are not
consecutive, like in Figure 3.8. Since either 〈Wt1 ,Wt2〉 ∈ co′1 or 〈Wt1 ,Wt2〉 ∈ co′1,
there exists a smaller cycle in co′1 where these two write transactions are consecutive. If
〈Wt1 ,Wt2〉 ∈ co′1, then co′1 contains the smaller cycle on the lower part of the original
cycle (Figure 3.8a), and if 〈Wt2 ,Wt1〉 ∈ co′1, then co′1 contains the cycle on the upper
part of the original cycle (Figure 3.8b). Thus, all the write transactions in a minimal cycle
of co′1 must be consecutive.

• If a minimal cycle were to contain three write transactions, then all of them cannot be con-
secutive unless they all three form a cycle, which is not possible. So a minimal cycle contains
at most two write transactions.

• Since co′1 contains no direct relation between read transactions, it cannot contain a cycle
with two consecutive read transactions, or only read transactions.

This shows that a minimal cycle of co′1 would include a read transaction and a write transaction,
and at most one more write transaction. We prove that such cycles are however impossible:

• if the cycle is of size 2, then it contains two transactionsWt1 andRt2 such that 〈Wt1 , Rt2〉 ∈
co′1 and 〈Rt2 ,Wt1〉 ∈ co′1. Since all the 〈R_,W_〉 dependencies in co′1 are of the form
〈Rt,Wt〉, it follows that t1 = t2. Then, we have 〈Wt1 , Rt1〉 ∈ co′1 which implies
〈t1, t1〉 ∈ wr ∪ so, a contradiction.

• if the cycle is of size 3, then it contains three transactions Wt1 , Wt2 , and Rt3 such that
〈Wt1 ,Wt2〉 ∈ co′1, 〈Wt2 , Rt3〉 ∈ co′1, and 〈Rt3 ,Wt1〉 ∈ co′1. Using a similar argument
as in the previous case, 〈Rt3 ,Wt1〉 ∈ co′1 implies t3 = t1. Therefore, 〈t1, t2〉 ∈ co and
〈t2, t1〉 ∈ wr ∪ so, which contradicts the fact that wr ∪ so ⊆ co. �

We de�ne a strengthening of co′1 where intuitively, we add all the dependencies from read trans-
actions t3 to write transactions t2 that “overwrite” values read by t3. Formally, co′2 = co′1 ∪
RW(co′1) where

RW(co′1) = {〈t3, t2〉|∃x ∈ vars(h). ∃t1 ∈ T ′. 〈t1, t3〉 ∈ wrx
′, 〈t1, t2〉 ∈ co′1, t2 writes x}

It can be shown that any cycle in co′2 would correspond to a Prefix violation in the original
history. Therefore,

Lemma 3.3.4. The relation co′2 is acyclic.

Proof. Assume that co′2 is cyclic. Any minimal cycle in co′2 still satis�es the properties of minimal
cycles of co′1 proved in Lemma 3.3.3 (because all write transactions are still totally ordered and co′2
doesn’t relate directly read transactions). So, a minimal cycle in co′2 contains a read transaction
and a write transaction, and at most one more write transaction.

Since co′1 is acyclic, a cycle in co′2, and in particular a minimal one, must necessarily contain a
dependency from RW(co′1). Note that a minimal cycle cannot contain two such dependencies
since this would imply that it contains two non-consecutive write transactions. The red edges in
Figure 3.9a show a minimal cycle of co′2 satisfying all the properties mentioned above. This cycle
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Wt1 Rt3

Wt2

writes x

Wt4
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t1 t3

t2

writes x

t4

wrx

co∗

wr ∪ so
co

(b)

Figure 3.9: Cycles in co′2 correspond to Prefix violations: (a) Minimal cycle in co′2, (b) Prefix violation in
〈h, co〉.
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wr′ ∪ so′

co′
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Figure 3.10: Prefix violations correspond to cycles in co′: (a) Prefix violation in 〈h, co〉, (b) Cycle in co′.

contains a dependency 〈Rt3 ,Wt2〉 ∈ RW(co′1) which implies the existence of a write transaction
Wt1 in hR|W s.t. 〈Wt1 , Rt3〉 ∈ wrx

′ and 〈Wt1 ,Wt2〉 ∈ co′1 andWt1 ,Wt2 write on x (these de-
pendencies are represented by the black edges in Figure 3.9a). The relations between these transac-
tions of hR|W imply that the corresponding transactions of h are related as shown in Figure 3.9b:
〈Wt1 ,Wt2〉 ∈ co′1 and 〈Wt2 ,Wt4〉 ∈ co′∗1 imply 〈t1, t2〉 ∈ co and 〈t2, t4〉 ∈ co∗, respectively,
〈Wt1 ,Wt3〉 ∈ wrx

′ implies 〈t1, t3〉 ∈ wrx, and 〈Wt4 , Rt3〉 ∈ co′1 implies 〈t4, t3〉 ∈ wr ∪ so.
This implies that 〈h, co〉 doesn’t satisfy the Prefix axiom, a contradiction.

Lemma 3.3.5. If a history h satisfies prefix consistency, then hR|W is serializable.

Proof. Let co′ be any total order consistent with co′2. Assume by contradiction that
〈
hR|W , co′

〉
doesn’t satisfy Serializability. Then, there exist t′1, t′2, t′3 ∈ T ′ such that 〈t′1, t′2〉, 〈t′2, t′3〉 ∈ co′

and t′1, t′2 write on some variablex and 〈t′1, t′3〉 ∈ wrx
′. But then t′1, t′2 are write transactions and

co′1 must contain 〈t′1, t′2〉. Therefore, RW(co′1) and co′2 should contain 〈t′3, t′2〉, a contradiction
with co′ being consistent with co′2.

Finally, it can be proved that any linearization co′ of co′2 satis�es Serializability (together with
hR|W ). Moreover, it can also be shown that the serializability of hR|W implies that h satis�es PC.
Therefore,

Theorem 3.3.2. A history h satisfies prefix consistency i� hR|W is serializable.

Proof. The “only-if” direction is proven by Lemma 3.3.5. For the reverse, we show that

∀co′. ∃co.
〈
hR|W , co′

〉
|= Serializability⇒ 〈h, co〉 |= Prefix
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Thus, let co′ be a commit (total) order on transactions of hR|W which together with hR|W
satis�es the serializability axiom. Let co be a commit order on transactions of h de�ned by co =
{〈t1, t2〉|〈Wt1 ,Wt2〉 ∈ co′} (co is clearly a total order). If co were not to be consistent with
wr ∪ so, then there would exist transactions t1 and t2 such that 〈t1, t2〉 ∈ wr ∪ so and 〈t2, t1〉 ∈
co, which would imply that 〈Wt1 , Rt2〉, 〈Rt2 ,Wt2〉 ∈ wr ∪ so and 〈Wt2 ,Wt1〉 ∈ co′, which
violates the acylicity of co′. We show that 〈h, co〉 satis�es Prefix. Assume by contradiction that
there exists a Prefix violation between t1, t2, t3, t4 (shown in Figure 3.10a), i.e., for some x ∈
vars(h), 〈t1, t3〉 ∈ wrx and t2 writes x, 〈t1, t2〉 ∈ co, 〈t2, t4〉 ∈ co∗ and 〈t4, t3〉 ∈ wr ∪ so.
Then, the corresponding transactionsWt1 ,Wt2 ,Wt4 , Rt3 in hR|W would be related as follows:
〈Wt1 ,Wt2〉 ∈ co′ and 〈Wt1 , Rt3〉 ∈ wrx

′ because 〈t1, t3〉 ∈ wrx and 〈t1, t2〉 ∈ co. Since co′

satis�es Serializability, then 〈Rt3 ,Wt2〉 ∈ co′. But 〈t2, t4〉 ∈ co∗ and 〈t4, t3〉 ∈ wr ∪ so imply
that 〈Wt2 ,Wt4〉 ∈ co′∗ and 〈Wt4 , Rt3〉 ∈ wr′ ∪ so′, which show that co′ is cyclic (the red cycle
in Figure 3.10b), a contradiction. �

Since the history hR|W can be constructed in linear time, Lemma 3.3.2, Theorem 3.3.2, and
Corollary 3.3.1 imply the following result.

Corollary 3.3.2. For an arbitrary but fixed constant k ∈ N, the problem of checking prefix consis-
tency for histories of width at most k is polynomial time.

3.3.3 Reducing Snapshot Isolation to Serializability

We extend the reduction of pre�x consistency to serializability to the case of snapshot isolation.
Compared to pre�x consistency, snapshot isolation disallows transactions that read the same snap-
shot of the database to commit together if they write on a common variable (stated by the Conflict
axiom). More precisely, for any pair of transactions t1 and t2 writing to a common variable, t1
must observe the e�ects of t2 or vice-versa. We re�ne the de�nition of hR|W such that any “seri-
alization” (i.e.., commit order satisfying Serializability) disallows that the read transactions cor-
responding to two such transactions are ordered both before their write counterparts. We do this
by introducing auxiliary variables that are read or written by these transactions. For instance, Fig-
ure 3.11 shows this transformation on the two histories in Figure 3.11a and Figure 3.11c, which
represent the anomalies known as “lost update” and “write skew”, respectively. The former is not
admitted by SI while the latter is admitted. Concerning “lost update”, the read counterpart of
the transaction on the left writes to a variable x12 that is read by its write counterpart, but also
written by the write counterpart of the other transaction. This forbids that the latter is serialized
in between the read and write counterparts of the transaction on the left. A similar scenario is
imposed on the transaction on the right, which makes that the transformed history is not seri-
alizable. Concerning the “write skew” anomaly, the transformed history is exactly as for the PC
reduction since the two transactions don’t write on a common variable. It is clearly serializable.

For a history h = 〈T,wr, so〉, the history hcR|W = 〈T ′,wr′, so′〉 is de�ned as hR|W with
the following additional construction: for every two transactions t1 and t2 ∈ T that write on a
common variable,

• Rt1 andWt2 (resp.,Rt2 andWt1) write on a variable x1,2 (resp., x2,1),

• the write transaction of ti reads xi,j from the read transaction of ti, for all i 6= j ∈ {1, 2},
i.e., wrx1,2 = {〈Rt1 ,Wt1〉} and wrx2,1 = {〈Rt2 ,Wt2〉}.
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Figure 3.11: Reducing SI to SER.

Note thathR|W andhcR|W have the same width (the session order is de�ned exactly in the same
way), which implies, by Lemma 3.3.2, that h and hcR|W have the same width.

The following result can be proved using similar reasoning as in the case of pre�x consistency.

Theorem 3.3.3. A history h satisfies snapshot isolation i� hcR|W is serializable.

Note that hcR|W and h have the same width, and that hcR|W can be constructed in linear time.
Therefore, Theorem 3.3.3, and Corollary 3.3.1 imply the following result.

Corollary 3.3.3. For an arbitrary but fixed constant k ∈ N, the problem of checking snapshot
isolation for histories of width at most k is polynomial time.

3.4 Communication graphs

In this section, we present an extension of the polynomial time results for PC, SI, and SER, which
allows to handle histories where the sharing of variables between di�erent sessions is sparse. For
the results in this section, we take the simplifying assumption that the session order is a union
of transaction sequences (modulo the �ctitious transaction writing the initial values), i.e., each
transaction sequence corresponding to the standard notion of session9. We represent the sharing
of variables between di�erent sessions using an undirected graph called a communication graph.
For instance, the communication graph of the history in Figure 3.12a is given in Figure 3.12b. For
readability, the edges are marked with the variables accessed by the two sessions.

We show that the problem of checking PC, SI, or SER is polynomial time when the size of
every biconnected component of the communication graph is bounded by a �xed constant. This
is stronger than the results in Section 3.3 because the number of biconnected components can
be arbitrarily large which means that the total number of sessions is unbounded. In general, we
prove that the time complexity of these consistency criteria is exponential only in the maximum
size of such a biconnected component, and not the whole number of sessions.

An undirected graph is biconnected if it is connected and if any one vertex were to be re-
moved, the graph will remain connected, and a biconnected component of a graph G is a maxi-
mal biconnected subgraph of G. Figure 3.12b shows the decomposition in biconnected compo-
nents of a communication graph. This graph contains 5 sessions while every biconnected com-
ponent is of size at most 3. Intuitively, if a history h is a violation to some consistency criterion
C ∈ {PC, SI, SER}, then there exists a projection of h on sessions from the same biconnected

9The results can be extended to arbitrary session orders by considering maximal transaction sequences in session order
instead of sessions.
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(a) A history with 5 sessions.
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(b) The communication graph and its decom-
position in biconnected components.

Figure 3.12: A history and its communication graph.

component which is also a violation to C (the reverse is trivially true). Therefore, checking any
of these criteria can be done in isolation for each biconnected component (more precisely, on
sub-histories that contain only sessions in the same biconnected component). Actually, this de-
composition argument works even for RC, RA, and CC. For instance, in the case of the history in
Figure 3.12a, any consistency criterion can be checked looking in isolation at three sub-histories:
a sub-history with S1 and S2, a sub-history with S2, S3, and S4, and a sub-history with S4 and
S5.

Formally, a communication graph of a history h is an undirected graph Comm(h) = (V,E)
where the set of vertices V is the set of sessions10 in h, and (v, v′) ∈ E i� the sessions v and
v′ contain two transactions t1 and t2, respectively, such that t1 and t2 read or write a common
variable x.

We begin with a technical lemma showing that minimal paths of certain form in the graph
representing a historyh and a relation co (on the transactions ofh) lie within a single biconnected
component of the underlying communication graph. This is used to show that any consistency
violation can be exposed by looking at a single biconnected component at a time. The graph
representing a history h and a relation co on the transactions of h is denoted by G(h, co)11.

Given a graph G(h, co) and a relation r on its vertices, a term over the relations so, wr, and co,
e.g., (wr ∪ so)+, a path of the form r (or an r-path) is a sequence of edges representing so, wr, or
co dependencies as speci�ed by the term r, e.g., a sequence of wr or so dependencies.

Lemma 3.4.1. LetB1,. . .,Bn be the biconnected components of Comm(h) for a historyh = 〈T,wr, so〉.
For eachBi, let coi be a total order on the transactions ofBi12 extending the session order so on the
transactions ofBi. Also, let co =

⋃
i coi. Then, for every term r ∈ {co+, (wr ∪ so)+}, any min-

imal r-path in the graph G(h, co) between two transactions from the same biconnected component
includes only transactions of that biconnected component.

Proof. We consider the case r = co+. Consider a minimal co+-path π = t0, . . . , tn be-
tween two transactions t0 and tn from the same biconnected component B of Comm(h) (i.e.,
from sessions inB). Assume by contradiction, thatπ traverses multiple biconnected components.
We de�ne a path πs = v0, . . . , vm between sessions, i.e., vertices of Comm(h), which contains
an edge (vj , vj+1) i� π contains an edge (ti, ti+1) with ti a transaction of session vj and ti+1 a
transaction of session vj+1 6= vj . Since any graph decomposes to a forest of biconnected compo-
nents, this path must necessarily leave and enter some biconnected component B1 to and from

10The transaction writing the initial values is considered as a distinguished session.
11The nodes of G(h, co) correspond to transactions in h and the edges connect pairs of transactions in so, wr , or co.
12That is, transactions that are included in the sessions inBi.
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t3 t4

t1 t2

B2

B1

co+2

co∗1 co∗1

co+2
so

(a) 〈t3, t4〉 ∈ so

t3 t4

t1 t2

B2

B1

co+2

co∗1 co∗1

co+2
so

(b) 〈t4, t3〉 ∈ so

Figure 3.13: Minimal paths between transactions in the same biconnected component.

the same biconnected component B2, i.e., πs must contain two vertices vj1 and vj2 in B1 such
that the successor vj1+1 of vj1 and the predecessor vj2−1 of vj2 are from B2. Let t1, t2, t3, t4
be the transactions in the path π corresponding to vj1 , vj2 , vj1+1, and vj2−1, respectively. Now,
since any two biconnected components share at most one vertex, it follows that t3 and t4 are from
the same session and

• if 〈t3, t4〉 ∈ so, then there exists a shorter path between t0 and t1 that uses the so relation
between 〈t3, t4〉 (we recall that so ⊆

⋃
i coi) instead of the transactions inB2, pictured in

Figure 3.13a, which is a contradiction to the minimality of π,

• if 〈t4, t3〉 ∈ so, then, we have a cycle in
⋃
i coi ∪ so, pictured in Figure 3.13b, which is also

a contradiction.

The case r = (wr ∪ so)+ can be proved in a similar manner since the reasoning outlined in
Figure 3.13 reduces to short-circuiting a path using a single so edge (and so is included in (wr ∪
so)+). �

Now we prove our �nal claim. For a history h = (T, so,wr) and biconnected component B
of Comm(h), the projection of h over transactions in sessions of B is denoted by h ↓ B, i.e.,
h ↓ B = (T ′, so′,wr′) where T ′ is the set of transactions in sessions of B, so′ and wr′ are the
projections of so and wr, respectively, on T ′.

Theorem 3.4.1. For any criterionC ∈ {RA,RC,CC,PC, SI, SER}, a historyh satisfiesC i� for
every biconnected componentB of Comm(h), h ↓ B satisfiesC .

Proof. The “only-if” direction is obvious. For the “if” direction, we �rst consider the cases C ∈
{RA,RC,CC, SER}. The proof concerning PC and SI is based on the reduction to SER out-
lined in Section 3.3.2 and Section 3.3.3, respectively, and it is given afterwards. LetB1,. . .,Bn be
the biconnected components of Comm(h).

Let C ∈ {RA,RC,CC, SER}, and let coi be the commit order that witnesses that h ↓ Bi
satis�es C , for each 1 ≤ i ≤ n. The union

⋃
i coi is acyclic since otherwise, any minimal cycle

would be a minimal path between transactions of the same biconnected componentBj , and, by
Lemma 3.4.1, it will include only transactions ofBj which is a contradiction to coj being a total
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order. We show that any linearization co of
⋃
i coi along with h satis�es the axioms ofC . The ax-

ioms de�ning RA, RC, CC, and SER involve transactions that write or read a common variable,
which implies that they belong to the same biconnected component (we refer to the transactions
t1, t2, and t3 in Figure 3.2). Furthermore, by Lemma 3.4.1, minimal paths witnessing the depen-
dencies in those axioms, e.g., (wr ∪ so)+ for CC, are also formed of transactions included in the
same biconnected component. Therefore, co satis�es any of those axioms provided that each coi
does.

We now consider the case where C = PC. Assume that each Bi satis�es PC. Based on the
reduction in Section 3.3.2, h satis�es PC i� hR|W satis�es SER. Moreover, since hR|W is ob-
tained from h by splitting each transaction t into a read transaction Rt and a write transaction
Wt while keeping all session order dependencies, each session in h corresponds to a session in
hR|W that reads or writes exactly the same set of variables. Therefore, Comm(h) is isomorphic to
Comm(hR|W ). SinceBi satis�es PC, we get that the corresponding biconnected componentB′i
of Comm(hR|W ) satis�es SER, for every i. Therefore, hR|W satis�es SER, which implies that h
satis�es PC. The case of SI is proved in a similar way using the reduction to the serializability of
hcR|W presented in Section 3.3.3 (note that two transactions of hcR|W may read or write an addi-
tional common variable only if they were writing a common variable in the original history and
therefore, Comm(h) is still isomorphic to Comm(hcR|W )).

Since the decomposition of a graph into biconnected components can be done in linear time,
Theorem 3.4.1 implies that any of the criteria PC, SI, or SER can be checked in timeO(size(h)bi-size(h)·
size(h)3 · bi-nb(h)) where bi-size(h) and bi-nb(h) are the maximum size of a biconnected com-
ponent in Comm(h) and the number of biconnected components of Comm(h), respectively.
The following corollary is a direct consequence of this observation.

Corollary 3.4.1. For an arbitrary but fixed constantk ∈ Nand any criterionC ∈ {PC, SI, SER},
the problem of checking if a history h satisfies C is polynomial time, provided that the size of every
biconnected component of Comm(h) is bounded by k.

3.5 Experimental Evaluation

To demonstrate the practical value of the theory developed in the previous sections, we argue that
our algorithms:

• are e�cient and scalable,

• enable an e�ective testing framework allowing to expose consistency violations in produc-
tion databases.

We focus on three of the criteria introduced in Section 3.1: serializability which is NP-complete
in general and polynomial time when the number of sessions is considered to be a constant, snap-
shot isolation which can be reduced in linear time to serializability, and causal consistency which
is polynomial time in general. As benchmark, we consider histories extracted from three dis-
tributed databases: CockroachDB [34], Galera [49], and AntidoteDB [6]. Following the approach
in Jepsen [63], histories are generated with random clients. For the experiments described here-
after, the randomization process is parametrized by: (1) the number of sessions (#sess), (2) the
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(a) Sessions. (b) Transactions per session.

(c) Operations per transaction. (d) Variables.
Figure 3.14: Scalability of our algorithm for checking Serializability (Algorithm 6) with comparison

to a SAT encoding. The x-axis represents the varying parameter while the y-axis represents
the wall-clock time in logarithmic scale. The circular, resp., triangular, dots represent wall-
clock times of our algorithm, resp., the SAT encoding. The red, green, and blue dots represent
invalid, valid and resource-exhausted instances, respectively.

number of transactions per session (#trs), (3) the number of operations per transaction (#ops),
and (4) an upper bound on the number of used variables (#vars)13. For any valuation of these
parameters, half of the histories generated with CockroachDB and Galera are restricted such that
the sets of variables written by any two sessions are disjoint (the sets of read variables are not con-
strained). This restriction is used to increase the frequency of valid histories.

In a �rst experiment, we investigated the e�ciency of our serializability-checking algorithm
(Algorithm 6) and we compared its performance with a direct SAT encoding14 of the serializabil-
ity de�nition in Section 3.1 (we used MiniSAT [40] to solve the SAT queries). We used histories
extracted from CockroachDB which claims to implement serializability, acknowledging however
the possibility of anomalies [35]. The sessions of a history are uniformly distributed among 3
nodes of a single cluster. To evaluate scalability, we �x a reference set of parameter values: #sess=6,
#trs=30, #ops=20, and #vars = 60× #sess, and vary only one parameter at a time. For instance,
the number of sessions varies from 3 to 15 in increments of 3. We consider 100 histories for each
combination of parameter values. The experimental data is reported in Figure 3.14. Our algo-
rithm scales well even when increasing the number of sessions, which is not guaranteed by its

13We ensure that every value is written at most once.
14For each ordered pair of transactions t1, t2 we add two propositional variables representing 〈t1, t2〉 ∈ (wr ∪ so)+

and 〈t1, t2〉 ∈ co, respectively. Then we generate clauses corresponding to: (1) singleton clauses de�ning the
relation wr ∪ so (extracted from the input history), (2) 〈t1, t2〉 ∈ wr ∪ so implies 〈t1, t2〉 ∈ co, (3) co being
a total order, and (4) the axioms corresponding to the considered consistency model. This is an optimization
that does not encode wr and so separately, which is sound because of the shape of our axioms (and because these
relations are �xed apriori).
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(a) Checking SI (CockroachDB) (b) Checking SI (Galera) (c) Checking CC (AntidoteDB)

Figure 3.15: Scalability of our algorithms for checking Snapshot isolation (Section 3.3.3) andCausal
consistency (Algorithm 5) with comparison to a SAT encoding. The x-axis represents the
varying parameter while the y-axis represents the wall-clock time in logarithmic scale. The cir-
cular, resp., triangular, dots represent wall-clock times of our algorithm, resp., the SAT encod-
ing. The red, green, and blue dots represent invalid, valid and resource-exhausted instances,
respectively.

worst-case complexity (in general, this is exponential in the number of sessions). Also, our al-
gorithm is at least two orders of magnitude more e�cient than the SAT encoding. While the
performance of SAT solvers is known to be heavily a�ected by the speci�c encoding of the prob-
lem, we strove to make the SAT formula as succinct as possible and optimize its construction. We
have �xed a 10 minutes timeout, a limit of 10GB of memory, and a limit of 10GB on the �les con-
taining the formulas to be passed to the SAT solver. The blue dots represent resource-exhausted
instances. The SAT encoding reaches the �le limit for 148 out of 200 histories with at least 12 ses-
sions (Figure 3.14a) and for 50 out of 100 histories with 60 transactions per session (Figure 3.14b),
the other parameters being �xed as explained above.

We have found a large number of violations, whose frequency increases with the number of ses-
sions, transactions per session, or operations per transaction, and decreases when allowing more
variables. This is expected since increasing any of the former parameters increases the chance of
interference between di�erent transactions while increasing the latter has the opposite e�ect. The
second and third column of Table 3.2 give a more precise account of the kind of violations we
found by identifying for each criterion X, the number of histories that violate X but no other
criterion weaker than X, e.g., there is only one violation to SI that satis�es PC.

The second experiment measures the scalability of the SI checking algorithm obtained by ap-
plying the reduction to SER described in Section 3.3.3 followed by the SER checking algorithm
in Algorithm 6, and its performance compared to a SAT encoding of SI. Actually, the reduction
to SER is performed on-the-�y, while traversing the history and checking for serializability (of
the transformed history). The SAT encoding follows the same principles as in the case of seri-
alizability. We focus on its behavior when increasing the number of sessions (varying the other
parameters leads to similar results). As benchmark, we used the same CockroachDB histories as
in Figure 3.14a and a number of histories extracted from Galera15 whose documentation contains
contradicting claims about whether it implements snapshot isolation [50, 51]. We use 100 histo-
ries per combination of parameter values as in the previous experiment. The results are reported

15In order to increase the frequency of valid histories, all sessions are executed on a single node.
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Table 3.2: Violation statistics. The “disjoint writes” columns refer to histories where the set of variables
written by any two sessions are disjoint.

Serializability checking Snapshot Isolation checking
Weakest CockroachDB CockroachDB Galera Galera
criterion violated (disjoint writes) (no constraints) (disjoint writes) (no constraints)
Read Committed 19 50
Read Atomic 180 547 91 139
Causal Consistency 339 382 88 43
Pre�x Consistency 2 7
Snapshot Isolation 1 1
Serializability 25
Total number of violations 546/1000 937/1000 198/250 233/250

in Figure 3.15a and Figure 3.15b. We observe the same behavior as in the case of SER. In partic-
ular, the SAT encoding reaches the �le limit for 150 out of 200 histories with at least 12 sessions
in the case of the CockroachDB histories, and for 162 out of 300 histories with at least 9 sessions
in the case of the Galera histories. The last two columns in Table 3.2 classify the set of violations
depending on the weakest criterion that they violate.

We also evaluated the performance of the CC checking algorithm in Section 3.2 when increas-
ing the number of sessions, on histories extracted from AntidoteDB, which claims to implement
causal consistency [7]. The results are reported in Figure 3.15c. In this case, the SAT encoding
reaches the �le limit for 150 out of 300 histories with at least 9 sessions. All the histories consid-
ered in this experiment are valid. However, when experimenting with other parameter values, we
have found several violations. The smallest parameter values for which we found violations were 3
sessions, 14 transactions per session, 14 operations per transaction, and 5 variables. The violations
we found are also violations of Read Atomic. For instance, one of the violations contains two
transactions t1 and t2, each of them writing to two variables x1 and x2, and another transaction
t3 that reads x1 from t1 and x2 from t2 (t1 and t2 are from di�erent sessions while t3 is an so
successor of t1 in the same session). These violations are novel and they were con�rmed by the
developers of AntidoteDB.

The re�nement of the algorithms above based on communication graphs, described in Sec-
tion 3.4, did not have a signi�cant impact on their performance. The histories we generated con-
tained few biconnected components (many histories contained just a single biconnected compo-
nent) which we believe is due to our proof of concept deployment of these databases on a single
machine that did not allow to experiment with very large number of sessions and variables.

3.6 RelatedWork

[31] give the �rst formalization of the criteria we consider in this work, using the speci�cation
methodology of [29]. This formalization uses two auxiliary relations, a visibility relation which
represents the fact that a transaction “observes” the e�ects of another transaction and a commit
order, also called arbitration order, like in our case. Executions are abstracted using a notion of his-
tory that includes only a session order and the adherence to some consistency criterion is de�ned
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as the existence of a visibility relation and a commit order satisfying certain axioms. Motivated by
practical goals, our histories include a write-read relation, which enables more uniform and in our
opinion, more intuitive, axioms to characterize consistency criteria. Our formalizations are how-
ever equivalent with those of [31] (a formal proof of this equivalence is presented in the extended
version of this paper [18]). Moreover, [31] do not investigate algorithmic issues as in our work.

[80] showed that checking serializability of an execution is NP-complete. Moreover, it identi-
�es a stronger criterion called conflict serializability which is polynomial-time checkable. Con�ict
serializability assumes that histories are given as sequences of operations and requires that the com-
mit order be consistent with a conflict-order between transactions de�ned based on this sequence
(roughly, a transaction t1 is before a transaction t2 in the con�ict order if it accesses some vari-
able x before t2 does). This result is not applicable to distributed databases where deriving such a
sequence between operations submitted to di�erent nodes in a network is impossible.

[21] showed that checking several variations of causal consistency on executions of a non-transactional
distributed database is polynomial time (they also assume that every value is written at most once).
Assuming singleton transactions, our notion of CC corresponds to the causal convergence crite-
rion in [21]. Therefore, our result concerning CC can be seen as an extension of this result con-
cerning causal convergence to transactions.

There are some works that investigated the problem of checking consistency criteria like se-
quential consistency and linearizability in the case of shared-memory systems. [54] showed that
checking linearizability of the single-value register type is NP-complete in general, but polynomial
time for executions where every value is written at most once. Using a reduction from serializ-
abilty, they showed that checking sequential consistency is NP-complete even when every value is
written at most once. [42] extended the result concerning linearizability to a series of abstract data
types called collections, that includes stacks, queues, key-value maps, etc. Sequential consistency
reduces to serializability for histories with singleton transactions (i.e., formed of a single read or
write operation). Therefore, our polynomial-time result for checking serializability of bounded-
width histories (Corollary 3.3.1) implies that checking sequential consistency of histories with a
bounded number of threads is polynomial time. The latter result has been established indepen-
dently by [2].

The notion of communication graph is inspired by the work of [33], which investigates partial-
order reduction (POR) techniques for multi-threaded programs. In general, the goal of partial-
order reduction [48] is to avoid exploring executions which are equivalent w.r.t. some suitable
notion of equivalence, e.g., Mazurkiewicz trace equivalence [73]. They use the acyclicity of com-
munication graphs to de�ne a class of programs for which their POR technique is optimal. The
algorithmic issues they explore are di�erent than ours and they don’t investigate biconnected com-
ponents of this graph as in our results.

3.7 Conclusion

In this chapter, we proposed novel logical characterizations of various consistency models of trans-
actional systems such as Read Committed (RC) [12], Read Atomic (RA) [31], Causal Consistency
(CC) [68], Prefix Consistency (PC) [30], Snapshot Isolation (SI) [12] and Serializability (SER). This
enables an investigation of algorithmic techniques for checking conformance of a given execu-
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tion. We establish the asymptotic complexity of this problem for each consistency model when
the read-from relation is known apriori. We introduce polynomial-time algorithms for RC, RA,
CC, and prove that checking conformance for PC, SI, and SER is NP-complete. In the latter case,
we introduce conformance checking algorithms that are polynomial time when the number of bi-
connected components of the communication graph is bounded by a �xed constant. Finally, we
demonstrate a runtime performance analysis of an implementation of our algorithms based on
histories from production databases. As benchmark, we consider histories extracted from three
distributed databases: CockroachDB [34], Galera [49], and AntidoteDB [6]. Using our implemen-
tation, we were able to �nd bugs in all these distributed databases, which con�rms their incorrect
promises on strong guarantees (CockroachDB) or previously mentioned bugs (Galera) or novel
bugs (AntidoteDB).
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Transactional Data Stores

We present MonkeyDB, a mock in-memory storage system meant for testing correctness of storage-
backed applications. MonkeyDB supports common APIs for accessing data (key-value updates,
as well as SQL queries), making it an easy substitute for an actual storage system. MonkeyDB can
be con�gured with one of several transaction isolation (consistency) levels.

MonkeyDB implements a centralized operational semantics for key-value stores, which is based
on the axiomatic de�nitions presented in Section 3.1. Transactions are executed serially, one after
another, the concurrency being simulated during the handling of read events. This semantics
maintains a history that contains all the past events (from all transactions/sessions), and write
events are simply added to the history. The value returned by a read event is established based on a
non-deterministic choice of a write-read dependency (concerning this read event) that satis�es the
axioms of the considered consistency models. Depending on the weakness of the isolation level,
this makes it possible to return values written in arbitrarily “old” transactions, and simulate any
concurrent behavior.

We formally prove that this semantics does indeed simulate any concurrent behavior, by show-
ing that it is equivalent to a semantics where transactions are allowed to interleave. In comparison
with concrete implementations, this semantics makes it possible to handle a wide range of consis-
tency models in a uniform way. It only has two sources of non-determinism: the order in which
entire transactions are submitted, and the choice of write-read dependencies in read events. This
enable better coverage of possible behaviors, the penalty in performance not being an issue in
safety testing workloads which are usually small (see our evaluation).

We also extend our semantics to cover SQL queries as well, by compiling SQL queries down to
transactions with multiple key-value reads/writes. A table in a relational database is represented
using a set of primary key values (identifying uniquely the set of rows) and a set of keys, one for
each cell in the table. The set of primary key values is represented using a set of Boolean key-
value pairs that simulate its characteristic function (adding or removing an element corresponds
to updating one of these keys to true or false). Then, SQL queries are compiled to read or write
accesses to the keys representing a table. For instance, a SELECT query that retrieves the set of
rows in a table that satisfy a WHERE condition is compiled to (1) reading Boolean keys to identify
the primary key values of the rows contained in the table, (2) reading keys that represent columns
used in the WHERE condition, and (3) reading all the keys that represent cells in a row satisfying
the WHERE condition. This rewriting contains the minimal set of accesses to the cells of a table
that are needed to ensure the conventional speci�cation of SQL. It makes it possible to “export”
formalizations of key-value store consistency models to SQL transactions.

The remainder of this chapter is organized as follows:
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k ∈ Keys x ∈ Vars tab ∈ T ~c, ~c1, ~c2 ∈ C∗

Prog
def
= Sess | Sess ||Prog

Sess
def
= Trans | Trans; Sess

Trans
def
= begin; Body; commit

Body
def
= Instr | Instr; Body

Instr
def
= InstrKV | InstrSQL | x := e | if(φ(~x)){Instr}

InstrKV
def
= x := read(k) | write(k, x)

InstrSQL
def
= SELECT ~c1 AS x FROM tab WHERE φ(~c2) |

INSERT INTO tab VALUES ~x |
DELETE FROM tab WHERE φ(~c) |
UPDATE tab SET ~c1 = ~x WHERE φ(~c2)

Figure 4.1: Program syntax. The set of all keys is denoted by Keys, Vars denotes the set of local variables, T
the set of table names, andC the set of column names. We useφ to denote Boolean expressions,
and e to denote expressions interpreted as values. We use~· to denote vectors of elements.

• Section 4.1 presents a programming language to represent storage-backed applications,

• Section 4.2 de�nes an operational semantics for key-value stores under various consistency
models, which simulates all concurrent behaviors with executions where transactions exe-
cute serially and which is based on the axiomatic de�nitions in Section 3.1,

• Section 4.3 broadens the scope of the key-value store semantics to SQL transactions using
a compiler that rewrites SQL queries to key-value accesses,

• Section 4.4 describes the implementation of MonkeyDB,

• Section 4.5 and Section 4.6 present an evaluation of MonkeyDB on several applications,
showcasing its superior coverage of weak behaviors as well as bug-�nding abilities.

Section 4.7 overviews related work, and Section 4.8 concludes.

4.1 Programming Language

Figure 4.1 lists the de�nition of two simple programming languages that we use to represent ap-
plications running on top of Key-Value or SQL stores, respectively. A program is a set of sessions
running in parallel, each session being composed of a sequence of transactions. Each transaction
is delimited by begin and commit instructions1, and its body contains instructions that access
the store, and manipulate a set of local variables Vars ranged over using x, y, . . ..

1For simplicity, we assume that all the transactions in the program commit. Aborted transactions can be ignored
when reasoning about safety because their e�ects should be invisible to other transactions.
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In case of a program running on top of a Key-Value store, the instructions can be reading the
value of a key and storing it to a local variable x (x := read(k)) , writing the value of a local
variable x to a key (write(k, x)), or an assignment to a local variable x. The set of values of keys
or local variables is denoted by Vals. Assignments to local variables use expressions interpreted as
values whose syntax is left unspeci�ed. Each of these instructions can be guarded by a Boolean
condition φ(~x) over a set of local variables ~x (their syntax is not important). Other constructs
like while loops can be de�ned in a similar way. Let PKV denote the set of programs where a
transaction body can contain only such instructions.

For programs running on top of SQL stores, the instructions include simpli�ed versions of
standard SQL instructions and assignments to local variables. These programs run in the context
of a database schema which is a (partial) function S : T ⇀ 2C mapping table names in T to sets
of column names in C. The SQL store is an instance of a database schema S , i.e., a functionD :
dom(S)→ 2R mapping each table tab in the domain of S to a set of rows of tab, i.e., functions
r : S(tab) → Vals. We use R to denote the set of all rows. The SELECT instruction retrieves
the columns ~c1 from the set of rows of tab that satisfy φ(~c2) (~c2 denotes the set of columns used
in this Boolean expression), and stores them into a variable x. INSERT adds a new row to tab
with values ~x, and DELETE deletes all rows from tab that satisfy a condition φ(~c). The UPDATE
instruction assigns the columns ~c1 of all rows of tab that satisfyφ(~c2) with values in ~x. LetPSQL
denote the set of programs where a transaction body can contain only such instructions.

4.2 Operational Semantics forPKV
We de�ne a small-step operational semantics for Key-Value store programs, which is parametrized
by a consistency model I . Transactions are executed serially one after another, and the values
returned by read operations are decided using the axiomatic de�nition of I . The semantics main-
tains a history of previously executed operations, and the value returned by a read is chosen non-
deterministically as long as extending the current history with the corresponding write-read de-
pendency satis�es the axioms of I . We show that this semantics is sound and complete for any
natural consistency model I , i.e., it generates precisely the same set of histories as a baseline se-
mantics where transactions can interleave arbitrarily and the read operations can return arbitrary
values as long as they can be proved to be correct at the end of the execution.

4.2.1 Definition of the Operational Semantics

We use the program in Figure 4.2a to give an overview of our semantics, assuming Causal Con-
sistency. This program has two concurrent transactions whose reads can both return the initial
value 0, which is not possible under Serializability.

Our semantics executes transactions in their entirety one after another (without interleaving
them), maintaining a history that contains all the executed operations. We assume that the trans-
action on the left executes �rst. Initially, the history contains a �ctitious transaction log that writes
the initial value 0 to all keys, and that will precede all the transaction logs created during the exe-
cution in session order.

Executing a write instruction consists in simply appending the corresponding write operation
to the log of the current transaction. For instance, executing the �rst write (and begin) in our
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begin;

write(k1,1);
x2=read(k2);
commit

||
begin;

write(k2,1);
x1=read(k1);
commit

write(k1, 0)
write(k2, 0)

write(k1, 1)

so

(a) (b)

write(k1, 0)
write(k2, 0)

write(k1, 1)
read(k2, 0)

so
wr

(c)

write(k1, 0)
write(k2, 0)

write(k1, 1)
read(k2, 0)

write(k2, 1)
read(k1, 0)

so sowr
wr

(d)
Figure 4.2: The Causal semantics on the program in (a), assuming that the transaction on the left is sched-

uled �rst.

example results in adding a transaction log that contains a write operation (see Figure 4.2b). The
execution continues with the read instruction from the same transaction, and it cannot switch to
the other transaction.

The execution of a read instruction consists in choosing non-deterministically a write-read de-
pendency that validates Causal when added to the current history. In our example, executing
read(k2) results in adding a write-read dependency from the transaction log writing initial val-
ues, which determines the return value of the read (see Figure 4.2c). This choice makes the ob-
tained history satisfy Causal.

The second transaction executes in a similar manner. When executing its read instruction, the
chosen write-read dependency is again related to the transaction log writing initial values (see Fig-
ure 4.2d). This choice is valid under Causal. Since a read must not read from the preceding
transaction, this semantics is able to simulate all the “anomalies” of a weak consistency model
(this execution being an example).

Formally, the operational semantics is de�ned as a transition relation⇒I between configura-
tions, which are de�ned as tuples containing the following:

• history h storing the operations executed in the past,

• identi�er j of the current session,

• local variable valuation γ for the current transaction,

• code B that remains to be executed from the current transaction, and

• sessions/transactions P that remain to be executed from the original program.

For readability, we de�ne a program as a partial function P : SessId ⇀ Sess that associates
session identi�ers in SessId with concrete code as de�ned in Figure 4.1 (i.e., sequences of transac-
tions). Similarly, the session order so in a history is de�ned as a partial function so : SessId ⇀
Tlogs∗ that associates session identi�ers with sequences of transaction logs. Two transaction logs
are ordered by so if one occurs before the other in some sequence so(j) with j ∈ SessId.

Before presenting the de�nition of⇒I , we introduce some notation. Let h be a history that
contains a representation of so as above. We use h ⊕j 〈t, O, po〉 to denote a history where
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spawn
t fresh P(j) = begin; Body; commit; S

h, _, _, ε,P⇒I h⊕j 〈t, ∅, ∅〉, j, ∅,Body,P[j 7→ S]

if-true
ϕ(~x)[x 7→ γ(x) : x ∈ ~x] true

h, j, γ, if(φ(~x)){Instr}; B,P⇒I h, j, γ, Instr; B,P

if-false
ϕ(~x)[x 7→ γ(x) : x ∈ ~x] false

h, j, γ, if(φ(~x)){Instr}; B,P⇒I h, j, γ,B,P

write
v = γ(x) i fresh

h, j, γ, write(k, x); B,P⇒I h⊕j writei(k, v), j, γ,B,P

read-local
write(k, v) is the last write on k in tw.r.t. po i fresh

h, j, γ, x := read(k); B,P⇒I h⊕j readi(k, v), j, γ[x 7→ v],B,P

read-extern
h = (T, so,wr)

t is the id of the last transaction log in so(j) write(k, v) ∈ writes(t′) with t′ ∈ T and t′ 6= t
i fresh h′ = (h⊕j readi(k, v))⊕ wr(t′, readi(k, v)) h′ satis�es I

h, j, γ, x := read(k); B,P⇒I h
′, j, γ[x 7→ v],B,P

Figure 4.3: Operational semantics forPKV programs under consistency model I . For a function f : A ⇀
B, f [a 7→ b] denotes the function f ′ : A ⇀ B de�ned by f ′(c) = f(c), for every c 6= a in
the domain of f , and f ′(a) = b.

〈t, O, po〉 is appended to so(j). Also, for an operation o, h ⊕j o is the history obtained from
h by adding o to the last transaction log in so(j) and as a last operation in the program order
of this log (i.e., if so(j) = σ; 〈t, O, po〉, then the session order so′ of h ⊕j o is de�ned by
so′(k) = so(k) for all k 6= j and so(j) = σ; 〈t, O ∪ o, po ∪ {(o′, o) : o′ ∈ O}〉). Finally,
for a history h = 〈T, so,wr〉, h⊕wr(t, o) is the history obtained from h by adding (t, o) to the
write-read relation.

Figure 4.3 lists the rules de�ning⇒I . The spawn rule starts a new transaction, provided that
there is no other live transaction (B = ε). It adds an empty transaction log to the history and
schedules the body of the transaction. if-true and if-false check the truth value of a Boolean
condition of an if conditional. write corresponds to a write instruction and consists in simply
adding a write operation to the current history. read-local andread-extern concern read in-
structions. read-local handles the case where the read follows a write on the same key k in the
same transaction: the read returns the value written by the last write on k in the current transac-
tion. Otherwise, read-extern corresponds to reading a value written in another transaction t′
(t is the id of the log of the current transaction). The transaction t′ is chosen non-deterministically
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spawn*
t fresh P(j) = begin; Body; commit; S ~B(j) = ε

h,~γ, ~B,P⇒ h⊕j 〈t, ∅, ∅〉, ~γ[j 7→ ∅], ~B[j 7→ Body],P[j 7→ S]

read-extern*
~B(j) = x := read(k); B h = (T, so,wr) t is the id of the last transaction log in so(j)

write(k, v) ∈ writes(t′) with t′ ∈ compTrans(h, ~B) and t 6= t′

i fresh h′ = (h⊕j readi(k, v))⊕ wr(t′, readi(k, v))

h,~γ, ~B,P⇒ h′, ~γ[(j, x) 7→ v], ~B[j 7→ B],P

Figure 4.4: A baseline operational semantics forPKV programs. Above, compTrans(h, ~B) denotes the set
of transaction logs in h that excludes those corresponding to live transactions, i.e., transaction
logs t′′ ∈ T such that t′′ is the last transaction log in some so(j′) and ~B(j′) 6= ε.

as long as extending the current history with the write-read dependency associated to this choice
leads to a history that still satis�es I2.

An initial con�guration for program P contains the program P along with a history h =
〈{t0}, ∅, ∅〉, where t0 is a transaction log containing only writes that write the initial values of
all keys, and empty current transaction code (B = ε). An execution of a program P under an
consistency model I is a sequence of con�gurations c0c1 . . . cn where c0 is an initial con�gura-
tion for P, and cm ⇒I cm+1, for every 0 ≤ m < n. We say that cn is I-reachable from c0. The
history of such an execution is the history h in the last con�guration cn. A con�guration is called
final if it contains the empty program (P = ∅). Let histI(P) denote the set of all histories of an
execution of P under I that ends in a �nal con�guration.

4.2.2 Correctness of the Operational Semantics

We de�ne the correctness of⇒I in relation to a baseline semantics where transactions can in-
terleave arbitrarily, and the values returned by read operations are only constrained to come from
committed transactions. This semantics is represented by a transition relation⇒, which is de�ned
by a set of rules that are analogous to⇒I . Since it allows transactions to interleave, a con�guration
contains a history h, the sessions/transactions P that remain to be executed, and:

• a valuation map ~γ that records local variable values in the current transaction of each ses-
sion (~γ associates identi�ers of sessions that have live transactions with valuations of local
variables),

• a map ~B that stores the code of each live transaction (associating session identi�ers with
code).

Figure 4.4 lists some rules de�ning⇒ (the others can be de�ned in a similar manner). spawn*
starts a new transaction in a session j provided that this session has no live transaction (~B(j) = ε).
Compared to spawn in Figure 4.3, this rule allows un�nished transactions in other sessions.
read-extern* does not check conformance to I , but it allows a read to only return a value writ-
ten in a completed (committed) transaction. In this work, we consider only consistency models

2A history which satis�es the �rst order formula (3.1) with the axiom de�ned in �gure 3.2 corresponding to I .
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satisfying this constraint. Executions, initial and �nal con�gurations are de�ned as in the case
of⇒I . The history of an execution is still de�ned as the history in the last con�guration. Let
hist∗(P) denote the set of all histories of an execution of P w.r.t.⇒ that ends in a �nal con�gu-
ration.

Practical consistency models satisfy a “pre�x-closure” property saying that if the axioms of I
are satis�ed by a pair 〈h2, co2〉, then they are also satis�ed by every prefix of 〈h2, co2〉. A pre�x of
〈h2, co2〉 contains a pre�x of the sequence of transactions in h2 when ordered according to co2,
and the last transaction log in this pre�x is possibly incomplete. In general, this pre�x-closure
property holds for consistency models I that are de�ned by axioms as in (3.1), provided that the
propertyφ(t2, α) is monotonic, i.e., the set of models in the context of a pair 〈h2, co2〉 is a superset
of the set of models in the context of a pre�x 〈h1, co1〉 of 〈h2, co2〉. For instance, the property
φ in the axiom de�ning Causal is (t2, α) ∈ (wr ∪ so)+, which is clearly monotonic. In general,
standard consistency models are de�ned using a property α of the form (t2, α) ∈ R where R is
an expression built from the relations po, so, wr, and co using (re�exive and) transitive closure
and composition of relations [17]. Such properties are monotonic in general (they would not be if
those expressions would use the negation/complement of a relation). An axiom as in (3.1) is called
monotonic when the property φ is monotonic.

The following theorem shows that histI(P) is precisely the set of histories under the baseline
semantics, which satisfy I (the validity of the reads is checked at the end of an execution), provided
that the axioms of I are monotonic.

Theorem 4.2.1. For any consistency model I defined by a set of monotonic axioms, histI(P) =
{h ∈ hist∗(P) : h satisfies I}.

The ⊆ direction follows mostly from the fact that⇒I is more constrained than⇒. For the
opposite direction, given a history h that satis�es I , i.e., there exists a commit order co such that
〈h, co〉 satis�es the axioms of I , we can show that there exists an execution under⇒I with history
h, where transactions execute serially in the order de�ned by co. The pre�x closure property is
used to prove that read-extern transitions are enabled (these transitions get executed with a
pre�x of h). See the supplementary material for more details.

It can also be shown that⇒I is deadlock-free for every natural consistency model (e.g., Read
Committed, Causal Consistency, Snapshot Isolation, and Serializability), i.e., every read can re-
turn some value satisfying the axioms of I at the time when it is executed (independently of pre-
vious choices).

4.3 Compiling SQL to Key-Value API

We de�ne an operational semantics for SQL programs (inPSQL) based on a compiler that rewrites
SQL queries to Key-Value read and write instructions. For presentation reasons, we use an in-
termediate representation where each table of a database instance is represented using a set variable
that stores values of the primary key3 (identifying uniquely the rows in the table) and a set of key-
value pairs, one for each cell in the table. In a second step, we de�ne a rewriting of the API used
to manipulate set variables into Key-Value read and write instructions.

3For simplicity, we assume that primary keys correspond to a single column in the table.
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Table:

A
Id Name City
1 Alice Paris
2 Bob Bangalore
3 Charles Bucharest

Intermediate representation:

A = { 1, 2, 3 }

A.1.Id: 1, A.1.Name: Alice, A.1.City: Paris
A.2.Id: 2, A.2.Name: Bob, A.2.City: Bangalore
A.3.Id: 3, A.3.Name: Charles, A.3.City: Bucharest

Figure 4.5: Representing tables with set variables and key-value pairs. We write a key-value pair as key:value.

Intermediate Representation Let S : T ⇀ 2C be a database schema (recall that T and
C are the set of table names and column names, resp.). For each table tab, let tab.pkey be the
name of the primary key column. We represent an instanceD : dom(S)→ 2R using:

• for each table tab, a set variable tab (with the same name) that contains the primary key
value r(tab.pkey) of every row r ∈ D(tab),

• for each row r ∈ D(tab) with primary key value pkeyVal = r(tab.pkey), and each
column c ∈ S(tab), a key tab.pkeyVal .c associated with the value r(c).

Example 4.3.1. The table A on the left of Figure 4.5, where the primary key is defined by the Id
column, is represented using a set variable A storing the set of values in the column Id, and one key-
value pair for each cell in the table.

Figure 4.6 lists our rewriting of SQL queries over a database instanceD to programs that ma-
nipulate the set variables and key-value pairs described above. This rewriting contains the minimal
set of accesses to the cells of a table that are needed to implement an SQL query according to its
conventional speci�cation. To manipulate set variables, we use add and remove for adding and
removing elements, respectively (returning true or false when the element is already present or
deleted from the set, respectively), and elements that returns all of the elements in the input
set4.

SELECT, DELETE, and UPDATE start by reading the contents of the set variable storing
primary key values and then, for every row, the columns in ~c2 needed to check the Boolean con-
dition φ (the keys corresponding to these columns). For every row satisfying this Boolean condi-
tion, SELECT continues by reading the keys associated to the columns that need to be returned,
DELETE removes the primary key value associated to this row from the set tab, and UPDATE
writes to the keys corresponding to the columns that need to be updated. In the case of UPDATE,
we assume that the values of the variables in ~x are obtained from a valuation γ (this valuation
would be maintained by the operational semantics of the underlying Key-Value store). INSERT
adds a new primary key value to the set variable tab (the call to add checks whether this value is
unique) and then writes to the keys representing columns of this new row.

ManipulatingSetVariables Based on the standard representation of a set using its charac-
teristic function, we implement each set variable tab using a set of keys tab.has.pkeyVal , one for

4add(s, e) and remove(s, e) add and remove the element e from s, respectively. elements(s) returns the content
of s.
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SELECT/DELETE/UPDATE

rows := elements(tab)

for ( let pkeyVal of rows ) {

for ( let c of ~c2 ) {

val[c] := read(tab.pkeyVal.c)

if ( φ[c 7→ val[c] : c ∈ ~c2] true )

// SELECT ~c1 AS x FROM tab WHERE φ(~c2)
for ( let c of ~c1 )

out[c] := read(tab.pkeyVal.c)

x := x ∪ out

// DELETE FROM tab WHERE φ(~c2)
remove(tab, pkeyVal);

// UPDATE tab SET ~c1 = ~x WHERE φ(~c2)
for ( let c of ~c1 )

write( tab.pkeyVal.c, γ(~x[c]) )

INSERT INTO tab VALUES ~x

pkeyVal := γ(~x[0])
if ( add(tab,pkeyVal) ) {

for ( let c of S(tab) ) {

write( tab.pkeyVal.c, γ(~x[c]) )

Figure 4.6: Compiling SQL queries to the intermediate representation. Above, γ is a valuation of local
variables. Also, in the case of INSERT, we assume that the �rst element of ~x represents the value
of the primary key.

add(tab, pkeyV al):

if (read(tab.has.pkeyV al))
return false;

write(tab.has.pkeyV al,true)
return true;

elements(tab):

ret := ∅
for ( let pkeyV al of Vals )

if (read(tab.has.pkeyV al))
ret := ret ∪ {pkeyV al}

return ret;

Figure 4.7: Manipulating set variables using key-value pairs.

each value pkeyVal ∈ Vals. These keys are associated with Boolean values, indicating whether
pkeyVal is contained in tab. In a concrete implementation, this set of keys need not be �xed a-
priori, but can grow during the execution with every new instance of an INSERT. Figure 4.7 lists
the implementations of add/elements, which are self-explanatory (remove is analogous).

4.4 Implementation

We implemented MonkeyDB5 to support an interface common to most storage systems. Opera-
tions can be either key-value (KV) updates (to access data as a KV map) or SQL queries (to access
data as a relational database). MonkeyDB supports transactions as well; a transaction can include
multiple operations. Figure 4.8 shows the architecture of MonkeyDB. A client can connect to

5We plan to make MonkeyDB available open-source soon.
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SQL Query Interface

SQL-To-KV Compiler

KV Store Interface

(API / HTTP)

Write

Read

Client Application
Running on KV Store

Client Application
Running on SQL Store

In-Memory
KV Store

Monkey DB

Figure 4.8: Architecture of MonkeyDB

MonkeyDB over a TCP connection, as is standard for SQL databases6. This o�ers a plug-and-
play experience when using standard frameworks such as JDBC [83]. Client applications can also
use MonkeyDB as a library in order to directly invoke the storage APIs, or interact with it via
HTTP requests, with JSON payloads.

MonkeyDB contains a SQL-To-KV compiler that parses an input query7, builds its Abstract
Syntax Tree (AST) and then applies the rewriting steps described in Section 4.3 to produce an
equivalent sequence of KV API calls (read() and write()). It uses a hashing routine (hash) to
generate unique keys corresponding to each cell in a table. For instance, in order to insert a value
v for a column c in a particular row with primary key value pkeyVal , of a table tab, we invoke
write(hash(tab, pkeyVal, c), v). We currently support only a subset of the standard SQL
operators. For instance, nested queries or join operators are unsupported; these can be added in
the future with more engineering e�ort.

MonkeyDB schedules transactions from di�erent sessions one after the other using a single
global lock. Internally, it maintains execution state as a history consisting of a set of transaction
logs, write-read relations and a partial session order (as discussed in §3.1). On a read(), MonkeyDB
�rst collects a set of possible writes present in transaction log that can potentially form write-read
(read-from) relationships, and then invokes the consistency checker (Figure 4.8) to con�rm valid-
ity under the chosen consistency model. Finally, it randomly returns one of the values associated
with valid writes. A user can optionally instruct MonkeyDB to only select from the set of latest
valid write per session. This option helps limit weak behaviors for certain reads.

The implementation of our consistency checker is based on prior work [17]. It maintains the
write-read relation as a graph, and detects cycles (isolation-level violations) using DFS traversals
on the graph. The consistency checker is an independent and pluggable module: we have one for
Read Committed and one for Causal Consistency, and more can be added in the future.

6We support the MySQL client-server protocol using https://github.com/jonhoo/msql-srv.
7We use https://github.com/ballista-compute/sqlparser-rs
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4.5 Evaluation: Microbenchmarks

// Get user’s tweets

Timeline(user u) {

Begin()

key = "tweets:" + u.id

T = read(key)

Commit()

return sortByTime(T)

}

// Get following users’ tweets

NewsFeed(user u) {

Begin()

FW = read("following:"+ u.id)

NF = {}

foreach v ∈ FW:

T = read("tweets:"+ v.id)

NF = NF ∪ T

Commit()

return sortByTime(NF)

}

Figure 4.9: Example operations of the Twitter app

4.5 Evaluation: Microbenchmarks

We consider a set of micro-benchmarks inspired from real-world applications (§4.5.1) and eval-
uate the number of test iterations required to fail an invalid assertion (§4.5.2). We also measure
the coverage of weak behaviors provided by MonkeyDB (§4.5.3). Each of these applications were
implemented based on their speci�cations described in prior work; they all use MonkeyDB as a
library, via its KV interface.

4.5.1 Applications

Twitter [93] This is based on a social-networking application that allows users to create a
new account, follow, unfollow, tweet, browse the newsfeed (tweets from users you follow) and
the timeline of any particular user. Figure 4.9 shows the pseudo code for two operations.

A user can access twitter from multiple clients (sessions), which could lead to unexpected be-
havior under weak consistency models. Consider the following scenario with two users,A andB
where userA is accessing twitter from two di�erent sessions,S1 andS2. UserA views the timeline
of user B from one session (S1:Timeline(B)) and decides to follow B through another session
(S2:Follow(A, B)). Now when userA visits their timeline or newsfeed (S2:NewsFeed(A)), they
expect to see all the tweets ofB that were visible via Timeline in session S1. But under weak con-
sistency models, this does not always hold true and there could be missing tweets.

Shopping Cart [89] This application allows a user to add, remove and change quantity of
items from di�erent sessions. It also allows the user to view all items present in the shopping cart.
The pseudo code and an unexpected behavior under weak consistency models were discussed in
§1.3, Figure 1.4.

Courseware [77] This is an application for managing students and courses, allowing students
to register, de-register and enroll for courses. Courses can also be created or deleted. Courseware
maintains the current status of students (registered, de-registered), courses (active, deleted) as well
as enrollments. Enrollment can contain only registered students and active courses, subject to the
capacity of the course.

Under weak isolation, it is possible that two di�erent students, when trying to enroll concur-
rently, will both succeed even though only one spot was left in the course. Another example that
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breaks the application is when a student is trying to register for a course that is being concurrently
removed: once the course is removed, no student should be seen as enrolled in that course.

Treiber Stack [76] Treiber stack is a concurrent stack data structure that uses compare-and-
swap (CAS) instructions instead of locks for synchronization. This algorithm was ported to oper-
ate on a kv-store in prior work [76] and we use that implementation. Essentially, the stack contents
are placed in a kv-store, instead of using an in-memory linked data structure. Each row in the store
contains a pair consisting of the stack element and the key of the next row down in the stack. A
designated key “head” stores the key of the top of the stack. CAS is implemented as a transac-
tion, but the pop and push operations do not use transactions, i.e., each read/write/CAS is its own
transaction.

When two di�erent clients try to pop from the stack concurrently, under serializability, each pop

would return a unique value, assuming that each pushed value is unique. However, under causal
consistency, concurrent pops can return the same value.

4.5.2 Assertion Checking

We ran the above applications with MonkeyDB to �nd out if assertions, capturing unexpected
behavior, were violated under causal consistency. Table 4.1 summarizes the results. For each ap-
plication, we used 3 client threads and 3 operations per thread. We ran each test with MonkeyDB
for a total of 10,000 times; we refer to a run as an iteration. We report the average number of iter-
ations (Iters) before an assertion failed, and the corresponding time taken (sec). All the assertions
were violated within 58 iterations, in half a second or less. In contrast, running with an actual
database almost never produces an assertion violation.

Application Assertion Avg. time to fail
(Iters) (sec)

Stack Element popped more than once 3.7 0.02
Courseware Course registration over�ow 10.6 0.09
Courseware Removed course registration 57.5 0.52
Shopping Item reappears after deletion 20.2 0.14
Twitter Missing tweets in feed 6.3 0.03

Table 4.1: Assertions checking results in microbenchmarks

4.5.3 Coverage

The previous section only checked for a particular set of assertions. As an additional measure
of test robustness, we count the number of distinct client-observable states generated by a test. A
client-observable state, for an execution, is the vector of values returned by read operations. For
instance, a stack’s state is de�ned by return values of pop operations; a shopping cart’s state is
de�ned by the return value of GetCart and so on.

For this experiment, we randomly generated test harnesses; each harness spawns multiple threads
that each execute a sequence of operations. In order to compute the absolute maximum of possi-
ble states, we had to limit the size of the tests: either 2 or 3 threads, each choosing between 2 to 4
operations.
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Note that any program that concurrently executes operations against a store has two main
sources of non-determinism: the �rst is the interleaving of operations (i.e., the order in which
operations are submitted to the store) and second is the choice of read-from (i.e., the value re-
turned by the store under its con�gured consistency model). MonkeyDB only controls the latter;
it is up to the application to control the former. There are many tools that systematically enumer-
ate interleavings (such as Chess [74], Coyote [37]), but we use a simple trick instead to avoid
imposing any burden on the application: we included an option in MonkeyDB to deliberately
add a small random delay (sleep between 0 to 4 ms) before each transaction begins. This option
was su�cient in our experiments, as we show next.

We also implemented a special setup using the Coyote tool [37] to enumerate all sources of
non-determinism, interleavings as well as read-from, in order to explore the entire state space of a
test. We use this to compute the total number of states. Figure 4.10 shows the number of distinct
states observed under di�erent consistency models, averaged across multiple (50) test harnesses.
For each of serializability and causal consistency, we show the max (as computed byCoyote) and
versions with and without the delay option in MonkeyDB.

Each of these graphs show similar trends: the number of states with causal consistency are much
higher than with serializability. Thus, testing with a store that is unable to generate weak behaviors
will likely be ine�ective. Furthermore, the “delay” versions of MonkeyDB are able to approach
the maximum within a few thousand attempts, implying that MonkeyDB’s strategy of per-read
randomness is e�ective for providing coverage to the application.
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Figure 4.10: State coverage obtained with MonkeyDB for various microbenchmarks

4.6 Evaluation: OLTPWorkloads

OLTPBench [39] is a benchmark suite of representative OLTP workloads for relational databases.
We picked a subset of OLTPBench for which we had reasonable assertions. Table 4.2 lists basic
information such as the number of database tables, the number of static transactions, how many
of them are read-only, and the number of di�erent assertions corresponding to system invariants
for testing the benchmark. We modi�ed OLTPBench by rewriting SQL join and aggregation
operators into equivalent application-level loops, following a similar strategy as prior work [85].
Except for this change, we ran OLTPBench unmodi�ed.

For TPC-C, we obtained a set of 12 invariants from its speci�cation document [92]. For all
other benchmarks, we manually identi�ed invariants that the application should satisfy. We as-
serted these invariants by issuing a read-only transaction to MonkeyDB at the end of the execution
of the benchmark. None of the assertions fail under serializability; they are indeed invariants un-
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Benchmark #Tables #Txns #Read-only #Assertions
TPC-C 9 5 2 12
SmallBank 3 6 1 1
Voter 3 1 0 1
Wikipedia 12 5 2 3

Table 4.2: OLTP benchmarks tested with MonkeyDB

der serializability.8 When using weaker isolation, we con�gured MonkeyDB to use latest reads
only (§4.4) for the assertion-checking transactions in order to isolate the weak behavior to only
the application.

We ran each benchmark 100 times and report, for each assertion, the number of runs in which it
was violated. Note that OLTPBench runs in two phases. The �rst is a loading phase that consists of
a big initial transaction to populates tables with data, and then the execution phase issues multiple
concurrent transactions. With the goal of testing correctness, we turn down the scale factor to
generate a small load and limit the execution phase time to ten seconds with just two or three
sessions. A smaller test setup has the advantage of making debugging easier. With MonkeyDB,
there is no need to generate large workloads.

TPC-C TPC-C emulates a wholesale supplier transactional system that delivers orders for a
warehouse company. This benchmark deals with customers, payments, orders, warehouses, de-
liveries, etc. We con�gured OLTPBench to issue a higher proportion (> 85%) of update trans-
actions, compared to read-only ones. Further, we considered a small input workload constituting
of one warehouse, two districts per warehouse and three customers per district.

TPC-C has twelve assertions (A1 to A12) that check for consistency between the database ta-
bles. For example, A12 checks: for any customer, the sum of delivered order-line amounts must be
equal to the sum of balance amount and YTD (Year-To-Date) payment amount of that customer.

Figure 4.11 shows the percentage of test runs in which an assertion failed. It shows that all
the twelve assertions are violated under Read Committed consistency model. In fact, 9 out of
the 12 assertions are violated in more than 60% of the test runs. In case of causal, all assertions
are violated with three sessions, except for A4 and A11. We manually inspected TPC-C and we
believe that both these assertions are valid under causal consistency. For instance, A4 checks for
consistency between two tables, both of which are only updated within the same transaction, thus
causal consistency is enough to preserve consistency between them.

These results demonstrate the e�ectiveness of MonkeyDB in breaking (invalid) assertions. Run-
ning with MySQL, under read committed, was unable to violate any assertion except for two (A10
and A12), even when increasing the number of sessions to 10. We used the same time limit of 10
seconds for the execution phase. We note that MySQL is much faster than MonkeyDB and ends
up processing up to 50×more transactions in the same time limit, yet is unable to violate most
assertions. Prior work [85] attempted a more sophisticated test setup where TPC-C was executed
on a Cassandra cluster, while running Jepsen [63] for fault injection. This setup also was unable
to violate all assertions, even when running without transactions, and on a weaker consistency

8We initially observed two assertions failing under serializability. Upon analyzing the code, we identi�ed that the
behavior is due to a bug in OLTPBench that we have reported to the authors (link ommitted).
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Figure 4.11: Assertion checking: TPC-C

Figure 4.12: Assertion checking: SmallBank, Voter, and Wikipedia

model than read committed. Only six assertions were violated with 10 sessions, eight assertions
with 50 sessions, and ten assertions with 100 sessions. With MonkeyDB, there is no need to set up
a cluster, use fault injection or generate large workloads that can make debugging very di�cult.

SmallBank,Voter, andWikipedia SmallBank is a standard �nancial banking system, deal-
ing with customers, saving and checking accounts, money transfers, etc. Voter emulates the vot-
ing system of a television show and allows users to vote for their favorite contestants. Wikipedia is
based on the popular online encyclopedia. It deals with a complex database schema involving page
revisions, page views, user accounts, logging, etc. It allows users to edit its pages and maintains a
history of page edits and user actions.

We identi�ed a set of �ve assertions, A13 to A17, that should be satis�ed by these systems. For
SmallBank, we check if the total money in the bank remains the same while it is transfered from
one account to another (A13). Voter requires that the number of votes by a user is limited to a
�xed threshold (A14). For Wikipedia, we check if for a given user and for a given page, the number
of edits recorded in the user information, history, and logging tables are consistent (A15-A17). As
before, we consider small work loads: (1) �ve customers for SmallBank, (2) one user for Voter, and
(3) two pages and two users for Wikipedia.

Figure 4.12 shows the results. MonkeyDB detected that all the assertions are invalid under the
chosen consistency models. Under causal, MonkeyDB could break an assertion in 26.7% (geo-
mean) runs given 2 sessions and in 37.2% (geo-mean) runs given 3 sessions. Under read commit-
ted, the corresponding numbers are 56.1% and 65.4% for 2 and 3 sessions, respectively.
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4 Testing Applications That Use Transactional Data Stores

4.7 RelatedWork

There have been several directions of work addressing the correctness of database-backed applica-
tions. We directly build upon one line of work concerned with the logical formalization of con-
sistency models or isolation levels [4, 12, 17, 31, 97]. Our work relies on the axiomatic de�nitions
of consistency models or isolation levels, as given in [17], which also investigated the problem of
checking whether a given history satis�es a certain isolation level. Our kv-store implementation
relies on these algorithms to check the validity of the values returned by read operations. Working
with a logical formalization allowed us to avoid implementing an actual database with replication
or sophisticated synchronization.

Another line of work concentrates on the problem of �nding “anomalies”: behaviors that are
not possible under serializability. This is typically done via a static analysis of the application code
that builds a static dependency graph that over-approximates the data dependencies in all possible
executions of the application [13, 32, 47, 52, 61, 94]. Anomalies with respect to a given consistency
model then corresponds to a particular class of cycles in this graph. Static dependency graphs turn
out to be highly imprecise in representing feasible executions, leading to false positives. Another
source of false positives is that an anomaly might not be a bug because the application may already
be designed to handle the non-serializable behavior [25, 52]. Recent work has tried to address
these issues by using more precise logical encodings of the application, e.g. [24, 25] or by using
user-guided heuristics [52].

Another approach consists of modeling the application logic and the consistency model in �rst-
order logic and relying on SMT solvers to search for anomalies [62, 75, 78], or de�ning specialized
reductions to assertion checking [10, 11]. TheClotho tool [85], for instance, uses a static analysis
of the application to generate test cases with plausible anomalies, which are deployed in a concrete
testing environment for generating actual executions.

Our approach, based on testing with MonkeyDB, has several practical advantages. There is no
need for analyzing application code; we can work with any application. There are no false positives
because we directly run the application and check for user-de�ned assertions, instead of looking
for application-agnostic anomalies. The limitation, of course, is the inherent incompleteness of
testing.

Several works have looked at the problem of reasoning about the correctness of applications
executing under weak isolation and introducing additional synchronization when necessary [9,
56, 69, 77]. As in the previous case, our work based on testing has the advantage that it can scale
to real sized applications (as opposed to these techniques which are based on static analysis or
logical proof arguments), but it cannot prove that an application is correct. Moreover, the issue
of repairing applications is orthogonal to our work.

From a technical perspective, our operational semantics based on recording past operations
and certain data-�ow and control-�ow dependencies is similar to recent work on stateless model
checking in the context of weak memory models, e.g. [1, 66]. This work, however, does not con-
sider transactions. Furthermore, their focus is on avoiding enumerating equivalent executions,
which is beyond the scope of our work (but an interesting direction for future work).
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4.8 Conclusion

Our goal is to enable developers to test the correctness of their storage-backed applications under
weak consistency models. Such bugs are hard to catch because weak behaviors are rarely generated
by real storage systems, but failure to address them can lead to loss of business [94]. We present
MonkeyDB, an easy-to-use mock storage system for weeding out such bugs. MonkeyDB uses
a logical understanding of isolation levels to provide (randomized) coverage of all possible weak
behaviors. Our evaluation reveals that using MonkeyDB is very e�ective at breaking assertions
that would otherwise hold under a strong consistency model.
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5 Conclusion

In this thesis, we have investigated various algorithmic questions related to automated testing of
weakly-consistent data storage systems and applications built on top of them. We have explored
the issue of specifying such systems, and studied the theoretical limits of checking whether a given
execution satis�es the intended speci�cation. The contributions of this thesis span several direc-
tions: (1) new formalisms for specifying weakly-consistent behaviors which integrate data type
abstractions like counters, registers, sets, lists, etc, or transactions with various degrees of isola-
tion, (2) new asymptotic complexity results that delineate the tractability of automated testing for
data storage systems, and (3) an e�ective methodology for improving the test coverage of storage-
backed applications.

In more detail, Chapter 2 focused on CRDTs, an important class of replicated data types that
o�ers a suitable compromise between consistency and availability. We have introduced a new spec-
i�cation formalism that provides a seamless integration between a particular data type semantics
and consistency properties related to the asynchronous propagation of updates. We have used this
formalism to derive new complexity results concerning the problem of checking conformance for
a given execution.

Chapter 3 investigated the same issues, but in the case of transactional key-value stores. We pro-
pose new de�nitions for established consistency models, which compared to previous approaches,
are expressed by logical constraints that follow a common template and make it possible to bet-
ter distill semantical di�erences. We have also established interesting semantical relationships be-
tween weak consistency models like Pre�x Consistency or Snapshot Isolation, and Serializability.
These advancements were used to ultimately derive complexity results about checking correctness
of transactional key-value store executions, and determine the limits of tractability.

Chapter 4 uses the speci�cation formalism presented in Chapter 3 in order to design a mock
in-memory storage system called MonkeyDB that makes it possible to improve coverage in testing
applications built on top of transactional storage systems. MonkeyDB simulates the behaviors of a
storage system satisfying a speci�c consistency model by keeping a global history of previously exe-
cuted operations and making uniform random choices on read operations. Our empirical evalua-
tion shows that MonkeyDB makes it possible to uncover invariant violations in established OLTP
benchmarks in a small number of attempts.

5.1 FutureWork

The work in this thesis can be advanced along several directions:

• Chapter 2 leaves open several questions related to the complexity of CRDT consistency
checking: checking conformance to the counter CRDT when the number of replicas is
bounded, or sets and �ags when their sizes are also bounded. We believe that these problems
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remain polynomial time, but as we explained in that chapter, the algorithms introduced in
our previous work [16] are only sound.

• Our conformance checking algorithms are offline, in the sense, that they receive as input
an entire execution. For future work, we want to explore online algorithms that process
a given execution on the �y. Designing such algorithms with a low resource footprint or
small overhead is a highly challenging issue.

• While our algorithms can only be used to indicate whether an execution is correct or not,
we would like to investigate the issue of root-causing violations. Some bugs are di�cult to
expose with small length executions. For instance, our tests on AntidoteDB exposed a bug
in an execution with 42 transactions, which has been con�rmed by the developers, and
which cannot be caught with smaller executions (up to our knowledge). In such cases, pin
pointing the root cause becomes essential for developers being able to repair it.

• Modern data storage systems support operations/transactions at di�erent levels of consis-
tency. While our work has assumed that all operations/transactions behave under the same
consistency model, extending it to such cases is an important research direction.

• Concerning the problem of testing applications, a frequent issue is the lack of precise speci-
�cations when checking their correctness against a weak consistency model. An interesting
direction for future work is trying to automatically synthesize application-level invariants
that distinguish its behaviors under strong consistency versus weak consistency. These in-
variants could be used during the development process as a way of guiding the insertion of
additional synchronization.

• More generally, an important issue is �nding the weakest possible consistency model for
which an application satis�es the intended speci�cation. This would help in improving
the performance of a given application, since weaker consistency models boost concurrency
and minimize the synchronization overhead.
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